bims-flamet Biomed News
on Cytokines and immunometabolism in metastasis
Issue of 2023–09–10
34 papers selected by
Peio Azcoaga, Biodonostia HRI



  1. Front Oncol. 2023 ;13 1264439
      
    Keywords:  hepatocellular carcinoma; immunotherapy; liver cancer; prognosis; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2023.1264439
  2. Cancers (Basel). 2023 Aug 28. pii: 4291. [Epub ahead of print]15(17):
      The tumor microenvironment (TME) is an important place with regard to the growth and sustenance of tumor cells [...].
    DOI:  https://doi.org/10.3390/cancers15174291
  3. Biomed Pharmacother. 2023 Sep 01. pii: S0753-3322(23)01203-9. [Epub ahead of print]166 115405
      The malignant tumor is the main cause of human deaths worldwide. Current therapies focusing on the tumor itself have achieved unprecedented benefits. Various pro-tumorigenic factors in the tumor microenvironment (TME) could abolish the effect of cancer therapy. Mesenchymal stromal cells (MSCs) are one of the substantial components in the tumor microenvironment, contributing to tumor progression. However, MSCs are not inherently tumor-promoting. Indeed, they acquire pro-tumorigenic properties under the education of the TME. We herein review how various elements in the TME including tumor cells, immune cells, pro-inflammatory factors, hypoxia, and extracellular matrix influence the biological characteristics of MSCs through complex interactions and demonstrate the underlying mechanisms. We also highlight the importance of tumor-associated mesenchymal stromal cells (TA-MSCs) in promoting tumor progression. Our review gives a new insight into the TA-MSCs as a potential tumor therapeutic target. It is anticipated that subverting MSCs education will facilitate the outbreak of therapeutic strategies against tumors.
    Keywords:  Education; Therapy; Tumor microenvironment; Tumor-associated mesenchymal stromal cells
    DOI:  https://doi.org/10.1016/j.biopha.2023.115405
  4. Cell Death Dis. 2023 09 04. 14(9): 587
      The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
    DOI:  https://doi.org/10.1038/s41419-023-06110-6
  5. Front Immunol. 2023 ;14 1199513
      It has been known for decades that the tumor extracellular matrix (ECM) is dysfunctional leading to loss of tissue architecture and promotion of tumor growth. The altered ECM and tumor fibrogenesis leads to tissue stiffness that act as a physical barrier to immune cell infiltration into the tumor microenvironment (TME). It is becoming increasingly clear that the ECM plays important roles in tumor immune responses. A growing body of data now indicates that ECM components also play a more active role in immune regulation when dysregulated ECM components act as ligands to interact with receptors on immune cells to inhibit immune cell subpopulations in the TME. In addition, immunotherapies such as checkpoint inhibitors that are approved to treat cancer are often hindered by ECM changes. In this review we highlight the ways by which ECM alterations affect and regulate immunity in cancer. More specifically, how collagens and major ECM components, suppress immunity in the complex TME. Finally, we will review how our increased understanding of immune and immunotherapy regulation by the ECM is leading towards novel disruptive strategies to overcome immune suppression.
    Keywords:  ECM - extracellular matrix; LAIR-1; cancer biology; cancer immunotherapy; collagen; tumor microenvironment (TME)
    DOI:  https://doi.org/10.3389/fimmu.2023.1199513
  6. iScience. 2023 Sep 15. 26(9): 107569
      Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment (TME), which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the TME. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
    Keywords:  Cancer; Health informatics; Human genetics; Quantitative genetics
    DOI:  https://doi.org/10.1016/j.isci.2023.107569
  7. Int J Cancer. 2023 Sep 08.
      Tumor-associated macrophages constitute the main cell population in the tumor microenvironment and play a crucial role in regulating the microenvironment composition. Emerging evidence has revealed that the metabolic profile determines the tumor-associated macrophage phenotype. Tumor-associated macrophage function is highly dependent on glucose metabolism, with glycolysis being the major metabolic pathway. Recent reports have demonstrated diversity in glucose flux of tumor-associated macrophages and complex substance communication with cancer cells. However, how the glucose flux in tumor-associated macrophages connects with glycolysis to influence tumor progression and the tumor microenvironment is still obscure. Moreover, while the development of single-cell sequencing technology allows a clearer and more accurate classification of tumor-associated macrophages, the metabolic profiles of tumor-associated macrophages from the perspective of single-cell omics has not been well summarized. Here, we review the current state of knowledge on glucose metabolism in tumor-associated macrophages and summarize the metabolic profiles of different tumor-associated macrophage subtypes from the perspective of single-cell omics. Additionally, we describe the current strategies targeting glycolysis in tumor-associated macrophages for cancer therapy.
    Keywords:  glucose metabolism; single-cell omics; targeted cancer therapy; tumor microenvironment; tumor-associated macrophage
    DOI:  https://doi.org/10.1002/ijc.34711
  8. Front Immunol. 2023 ;14 1212695
      Despite chimeric antigen receptor (CAR) T cell therapy's extraordinary success in subsets of B-cell lymphoma and leukemia, various barriers restrict its application in solid tumors. This has prompted investigating new approaches for producing CAR T cells with superior therapeutic potential. Emerging insights into the barriers to CAR T cell clinical success indicate that autophagy shapes the immune response via reprogramming cellular metabolism and vice versa. Autophagy, a self-cannibalization process that includes destroying and recycling intracellular components in the lysosome, influences T cell biology, including development, survival, memory formation, and cellular metabolism. In this review, we will emphasize the critical role of autophagy in regulating and rewiring metabolic circuits in CAR T cells, as well as how the metabolic status of CAR T cells and the tumor microenvironment (TME) alter autophagy regulation in CAR T cells to restore functional competence in CAR Ts traversing solid TMEs.
    Keywords:  CAR T cell; adoptive cellular therapy (ACT); autophagy; metabolism; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2023.1212695
  9. Int J Mol Sci. 2023 Aug 30. pii: 13427. [Epub ahead of print]24(17):
      The spread of breast cancer to distant sites is the major cause of death in breast cancer patients. Increasing evidence supports the role of the tumor microenvironment (TME) in breast cancers, and its pathologic assessment has become a diagnostic and therapeutic tool. In the TME, a bidirectional interplay between tumor and stromal cells occurs, both at the primary and metastatic site. Hundreds of molecules, including cytokines, chemokines, and growth factors, contribute to this fine interaction to promote tumor spreading. Here, we investigated the effects of Rimonabant and Cannabidiol, known for their antitumor activity, on reprogramming the breast TME. Both compounds directly affect the activity of several pathways involved in breast cancer progression. To mimic tumor-stroma interactions during breast-to-lung metastasis, we investigated the effect of the compounds on growth factor secretion from metastatic breast cancer cells and normal and activated lung fibroblasts. In this setting, we demonstrated the anti-metastatic potential of the two compounds, and the membrane array analyses highlighted their ability to alter the release of factors involved in the autocrine and paracrine regulation of tumor proliferation, angiogenesis, and immune reprogramming. The results enforce the antitumor potential of Rimonabant and Cannabidiol, providing a novel potential tool for breast cancer TME management.
    Keywords:  breast cancer; cannabidiol; metastatic breast cancer; rimonabant; tumor microenvironment
    DOI:  https://doi.org/10.3390/ijms241713427
  10. Front Immunol. 2023 ;14 1228331
      Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.
    Keywords:  Tregs; cancer; immunotherapy; lncRNA; miRNA
    DOI:  https://doi.org/10.3389/fimmu.2023.1228331
  11. Int J Mol Sci. 2023 Aug 28. pii: 13353. [Epub ahead of print]24(17):
      The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
    Keywords:  metformin; tumor microenvironment; tumor-infiltrating lymphocytes
    DOI:  https://doi.org/10.3390/ijms241713353
  12. Mol Oncol. 2023 Sep 04.
      The role of the tumor microenvironment (TME) in immuno-oncology has driven demand for technologies that deliver in situ, or spatial, molecular information. Compartmentalized heterogeneity that traditional methods miss is becoming key to predicting both acquired drug resistance to targeted therapies as well as patient response to immunotherapy. Here, we describe a novel method for assay-agnostic spatial profiling and demonstrate its ability to detect immune microenvironment signatures in breast cancer patients that are unresolved by the immunohistochemical (IHC) assessment of programmed cell death ligand-1 (PD-L1) on immune cells, which represents the only FDA microenvironment-based companion diagnostic test that has been approved for triple-negative breast cancer (TNBC). Two distinct physiological states were found that are uncorrelated to tumor mutational burden (TMB), microsatellite instability (MSI), PD-L1 expression, and intrinsic cancer subtypes.
    Keywords:  Spatial profiling; immuno-oncology; triple-negative breast cancer; tumor microenvironment
    DOI:  https://doi.org/10.1002/1878-0261.13515
  13. Biomed Pharmacother. 2023 Sep 01. pii: S0753-3322(23)01188-5. [Epub ahead of print]166 115390
      The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
    Keywords:  Cell mechanics; Collagen; Extracellular matrix; Immunotherapy; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.biopha.2023.115390
  14. Front Immunol. 2023 ;14 1224269
      Tumor development is closely associated with a complex tumor microenvironment, which is composed of tumor cells, blood vessels, tumor stromal cells, infiltrating immune cells, and associated effector molecules. T helper type 17 (Th17) cells, which are a subset of CD4+ T cells and are renowned for their ability to combat bacterial and fungal infections and mediate inflammatory responses, exhibit context-dependent effector functions. Within the tumor microenvironment, different molecular signals regulate the proliferation, differentiation, metabolic reprogramming, and phenotypic conversion of Th17 cells. Consequently, Th17 cells exert dual effects on tumor progression and can promote or inhibit tumor growth. This review aimed to investigate the impact of various alterations in the tumor microenvironment on the antitumor and protumor effects of Th17 cells to provide valuable clues for the exploration of additional tumor immunotherapy strategies.
    Keywords:  Th17 cells; anti-/pro-tumor; molecular regulation; transdifferentiation; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2023.1224269
  15. Front Pharmacol. 2023 ;14 1268094
      
    Keywords:  anti-cancer (anticancer) drugs; botanical drug; natural product; therapeutic advance; tumor micreoenvironment (TME)
    DOI:  https://doi.org/10.3389/fphar.2023.1268094
  16. Biomed Pharmacother. 2023 Sep 01. pii: S0753-3322(23)01212-X. [Epub ahead of print]166 115414
      Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.
    Keywords:  Immunosuppression; Subvert; Target; Triple-negative breast cancer; Tumor-associated macrophage
    DOI:  https://doi.org/10.1016/j.biopha.2023.115414
  17. Front Pharmacol. 2023 ;14 1217400
      Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/β-catenin, transforming growth factor-β1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.
    Keywords:  angiogenesis; cancer stem cells; carcinoma cell proliferation; hepatic fibrosis; hepatocellular carcinoma; invasion and migration; tumor microenvironment; tumor-associated macrophages
    DOI:  https://doi.org/10.3389/fphar.2023.1217400
  18. Biomed Pharmacother. 2023 Sep 01. pii: S0753-3322(23)01223-4. [Epub ahead of print]166 115425
      Despite continuous improvements in research and new cancer therapeutics, the goal of eradicating cancer remains elusive because of drug resistance. For a long time, drug resistance research has been focused on tumor cells themselves; however, recent studies have found that the tumor microenvironment also plays an important role in inducing drug resistance. Cancer-associated fibroblasts (CAFs) are a main component of the tumor microenvironment. They cross-talk with cancer cells to support their survival in the presence of anticancer drugs. This review summarizes the current knowledge of the role of CAFs in tumor drug resistance. An in-depth understanding of the mechanisms underlying the cross-talk between CAFs and cancer cells and insight into the importance of CAFs in drug resistance can guide the development of new anticancer strategies.
    Keywords:  Cancer-associated fibroblasts; Drug resistance
    DOI:  https://doi.org/10.1016/j.biopha.2023.115425
  19. Trends Cancer. 2023 Sep 04. pii: S2405-8033(23)00164-4. [Epub ahead of print]
      In recent years technologies that can achieve readouts at cellular resolution such as single-cell RNA sequencing (scRNA-seq) have provided a comprehensive characterization of the cellular proportions and phenotypes that populate the tumor microenvironment (TME). However, because of the sample dissociation steps required by these protocols, they fail to capture information related to the intricate spatial context in which cells operate as well as their dense networks of interactions. Spatial profiling technologies have recently emerged as a valuable way to investigate the physical organization of cells crowding the TME in intact tissues. In this review we first discuss how spatial profiling technologies have propelled TME characterization, and then explore their potential to improve both diagnosis and prognosis for cancer patients in the clinic.
    Keywords:  data analysis; spatial omics; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.trecan.2023.08.004
  20. Life Sci. 2023 Sep 04. pii: S0024-3205(23)00705-1. [Epub ahead of print] 122070
      Tumor cells are required to undergo metabolic reprogramming for rapid development and progression, and one of the metabolic characteristics of cancer cells is the excessive synthesis and utilization of nucleotides. Abnormally increased nucleotides and their metabolites not only directly accelerate tumor cell progression but also indirectly act on stromal cells in the tumor microenvironment (TME) via a paracrine manner to regulate tumor progression. Purine nucleotides are mainly produced via de novo nucleotide synthesis in tumor cells; therefore, intervening in their synthesis has emerged as a promising strategy in anti-tumor therapy. De novo purine synthesis is a 10-step reaction catalyzed by six enzymes to synthesize inosine 5-monophosphate (IMP) and subsequently synthesize AMP and GMP. Phosphoribosylaminoimidazole carboxylase/phosphori-bosylaminoimidazole succinocarboxamide synthetase (PAICS) is a bifunctional enzyme that catalyzes de novo purine synthesis. Aberrantly elevated PAICS expression in various tumors is associated with poor prognosis. Evidence suggests that PAICS and its catalytic product, N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR), could inhibit tumor cell apoptosis and promote the growth, epithelial-mesenchymal transition (EMT), invasion, and metastasis by regulating signaling pathways such as pyruvate kinase M2 (PKM2), extracellular signal-related kinases 1 and 2 (ERK1/2), focal adhesion kinase (FAK) and so on. This review summarizes the structure, biological functions and the molecular mechanisms of PAICS in cancer development and discusses its potential to be a target for tumor therapy.
    Keywords:  Carcinogenesis; De novo purine synthesis; Nucleotide metabolism; PAICS; SAICAR
    DOI:  https://doi.org/10.1016/j.lfs.2023.122070
  21. Cancer Discov. 2023 Sep 06. 13(9): 1973-1981
       SUMMARY: Cancer is an age-related disease, with the majority of patients receiving their diagnosis after the age of 60 and most mortality from cancer occurring after this age. The tumor microenvironment changes drastically with age, which in turn affects cancer progression and treatment efficacy. Age-related changes to individual components of the microenvironment have received well-deserved attention over the past few decades, but the effects of aging at the interface of two or more microenvironmental components have been vastly understudied. In this perspective, we discuss the relationship between the aging extracellular matrix and the aging immune system, how they affect the tumor microenvironment, and how these multidisciplinary studies may open avenues for new therapeutics. Cancer is a disease of aging. With a rapidly aging population, we need to better understand the age-related changes that drive tumor progression, ranging from secreted changes to biophysical and immune changes.
    DOI:  https://doi.org/10.1158/2159-8290.CD-23-0505
  22. Mol Cancer. 2023 Sep 07. 22(1): 148
      Neutrophils, the most prevalent innate immune cells in humans, have garnered significant attention in recent years due to their involvement in cancer progression. This comprehensive review aimed to elucidate the important roles and underlying mechanisms of neutrophils in cancer from the perspective of their whole life cycle, tracking them from development in the bone marrow to circulation and finally to the tumor microenvironment (TME). Based on an understanding of their heterogeneity, we described the relationship between abnormal neutrophils and clinical manifestations in cancer. Specifically, we explored the function, origin, and polarization of neutrophils within the TME. Furthermore, we also undertook an extensive analysis of the intricate relationship between neutrophils and clinical management, including neutrophil-based clinical treatment strategies. In conclusion, we firmly assert that directing future research endeavors towards comprehending the remarkable heterogeneity exhibited by neutrophils is of paramount importance.
    Keywords:  Clinical applications; Functions; Heterogeneity; Neutrophils; Orchestrations; Origins; Subsets; TANs (tumor-associated neutrophils)
    DOI:  https://doi.org/10.1186/s12943-023-01843-6
  23. Cell Death Differ. 2023 Sep 05.
      The abnormal upregulation of programmed death ligand-1 (PD-L1) on tumor cells impedes T-cell mediated cytotoxicity through PD-1 engagement, and further exploring the mechanisms regulation of PD-L1 in cancers may enhance the clinical efficacy of PD-L1 blockade. Here, using single-guide RNAs (sgRNAs) screening system, we identify ubiquitin-specific processing protease 2 (USP2) as a novel regulator of PD-L1 stabilization for tumor immune evasion. USP2 directly interacts with and increases PD-L1 abundance in colorectal and prostate cancer cells. Our results show that Thr288, Arg292 and Asp293 at USP2 control its binding to PD-L1 through deconjugating the K48-linked polyubiquitination at lysine 270 of PD-L1. Depletion of USP2 causes endoplasmic reticulum (ER)-associated degradation of PD-L1, thus attenuates PD-L1/PD-1 interaction and sensitizes cancer cells to T cell-mediated killing. Meanwhile, USP2 ablation-induced PD-L1 clearance enhances antitumor immunity in mice via increasing CD8+ T cells infiltration and reducing immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), whereas PD-L1 overexpression reverses the tumor growth suppression by USP2 silencing. USP2-depletion combination with anti-PD-1 also exhibits a synergistic anti-tumor effect. Furthermore, analysis of clinical tissue samples indicates that USP2 is positively associated with PD-L1 expression in cancer. Collectively, our data reveal a crucial role of USP2 for controlling PD-L1 stabilization in tumor cells, and highlight USP2 as a potential therapeutic target for cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41418-023-01219-9
  24. Front Genet. 2023 ;14 1087432
      The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
    Keywords:  breast cancer; breast cancer genetics; precision medicine; signaling pathways; targeted therapy; tumor evolution; tumor heterogeneity
    DOI:  https://doi.org/10.3389/fgene.2023.1087432
  25. Nat Commun. 2023 Sep 02. 14(1): 5346
      Chimeric antigen receptor (CAR) T cells have transformed the treatment landscape for hematological malignancies. However, CAR T cells are less efficient against solid tumors, largely due to poor infiltration resulting from the immunosuppressive nature of the tumor microenvironment (TME). Here, we assessed the efficacy of Lewis Y antigen (LeY)-specific CAR T cells in patient-derived xenograft (PDX) models of prostate cancer. In vitro, LeY CAR T cells directly killed organoids derived from androgen receptor (AR)-positive or AR-null PDXs. In vivo, although LeY CAR T cells alone did not reduce tumor growth, a single prior dose of carboplatin reduced tumor burden. Carboplatin had a pro-inflammatory effect on the TME that facilitated early and durable CAR T cell infiltration, including an altered cancer-associated fibroblast phenotype, enhanced extracellular matrix degradation and re-oriented M1 macrophage differentiation. In a PDX less sensitive to carboplatin, CAR T cell infiltration was dampened; however, a reduction in tumor burden was still observed with increased T cell activation. These findings indicate that carboplatin improves the efficacy of CAR T cell treatment, with the extent of the response dependent on changes induced within the TME.
    DOI:  https://doi.org/10.1038/s41467-023-40852-3
  26. Int J Mol Sci. 2023 Aug 23. pii: 13085. [Epub ahead of print]24(17):
      Cancer research has prioritized the study of the tumor microenvironment (TME) as a crucial area of investigation. Understanding the communication between tumor cells and the various cell types within the TME has become a focal point. Bidirectional communication processes between these cells support cellular transformation, as well as the survival, invasion, and metastatic dissemination of tumor cells. Extracellular vesicles are lipid bilayer structures secreted by cells that emerge as important mediators of this cell-to-cell communication. EVs transfer their molecular cargo, including proteins and nucleic acids, and particularly microRNAs, which play critical roles in intercellular communication. Tumor-derived EVs, for example, can promote angiogenesis and enhance endothelial permeability by delivering specific miRNAs. Moreover, adipocytes, a significant component of the breast stroma, exhibit high EV secretory activity, which can then modulate metabolic processes, promoting the growth, proliferation, and migration of tumor cells. Comprehensive studies investigating the involvement of EVs and their miRNA cargo in the TME, as well as their underlying mechanisms driving tumoral capacities, are necessary for a deeper understanding of these complex interactions. Such knowledge holds promise for the development of novel diagnostic and therapeutic strategies in cancer treatment.
    Keywords:  cancer progression; extracellular vesicles; metastasis; miRNAs; small EVs; tumor progression
    DOI:  https://doi.org/10.3390/ijms241713085
  27. Cell Death Dis. 2023 09 04. 14(9): 586
      The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
    DOI:  https://doi.org/10.1038/s41419-023-06119-x
  28. Front Bioeng Biotechnol. 2023 ;11 1214190
      Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
    Keywords:  biotechnology; cancer diagnosis; cancer therapy; exosomes; mesenchymal stem cells
    DOI:  https://doi.org/10.3389/fbioe.2023.1214190
  29. Cancers (Basel). 2023 Aug 24. pii: 4250. [Epub ahead of print]15(17):
      Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
    Keywords:  adiponectin; angiogenesis; epithelial–mesenchymal transition; leptin; tumor microenvironment
    DOI:  https://doi.org/10.3390/cancers15174250
  30. Crit Rev Oncol Hematol. 2023 Sep 01. pii: S1040-8428(23)00206-8. [Epub ahead of print] 104118
      DCLK1, a tuft cell marker, is widely expressed in various tumors. Its high expression levels are closely linked to malignant tumor progression, making it a potential tumor-related marker. Recent studies have shed light on the critical roles of DCLK1 and tuft cells in the immune response and the maintenance of epithelial homeostasis, as well as targeted immune escape mechanisms in the tumor microenvironment. This review aims to comprehensively examine the current understanding of immune-related functions mediated by DCLK1 and tuft cells in epithelial tissues, including the roles of relevant cells and important factors involved. Additionally, this review will discuss recent advances in anti-tumor immunity mediated by DCLK1/tuft cells and their potential as immunotherapeutic targets. Furthermore, we will consider the potential impact of DCLK1 targeted therapy in cancer immunotherapy, particularly DCLK1 kinase inhibitors as potential therapeutic drugs in anti-tumor immunity, providing a new perspective and reference for future research.
    Keywords:  DCLK1; ILC2s; immunotherapy; tuft cells; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.critrevonc.2023.104118
  31. Biol Direct. 2023 Sep 07. 18(1): 56
       BACKGROUND: Tumor-associated macrophages (TAMs) are an important subset of innate immune cells in the tumor microenvironment, and they are pivotal regulators of tumor-promoting inflammation and tumor progression. Evidence has proven that TAM numbers are substantially increased in cancers, and most of these TAMs are polarized toward the alternatively activated M2 phenotype; Thus, these TAMs strongly promote the progression of cancer diseases. Type 1 innate lymphocytes (ILC1s) are present in high numbers in intestinal tissues and are characterized by the expression of the transcription factor T-bet and the secretion of interferon (IFN)-γ, which can promote macrophages to polarize toward the classically activated antitumor M1 phenotype. However, the relationship between these two cell subsets in colon cancer remains unclear.
    METHODS: Flow cytometry was used to determine the percentages of M1-like macrophages, M2-like macrophages and ILC1s in colon cancer tissues and paracancerous healthy colon tissues in the AOM/DSS-induced mouse model of colon cancer. Furthermore, ILC1s were isolated and bone marrow-derived macrophages were generated to analyze the crosstalk that occurred between these cells when cocultured in vitro. Moreover, ILC1s were adoptively transferred or inhibited in vivo to explore the effects of ILC1s on tumor-infiltrating macrophages and tumor growth.
    RESULTS: We found that the percentages of M1-like macrophages and ILC1s were decreased in colon cancer tissues, and these populations were positively correlated. ILC1s promoted the polarization of macrophages toward the classically activated M1-like phenotype in vitro, and this effect could be blocked by an anti-IFN-γ antibody. The in vivo results showed that the administration of the Group 1 innate lymphocyte-blocking anti-NK1.1 antibody decreased the number of M1-like macrophages in the tumor tissues of MC38 tumor-bearing mice and promoted tumor growth, and adoptive transfer of ILC1s inhibited tumors and increased the percentage of M1-like macrophages in MC38 tumor-bearing mice.
    CONCLUSIONS: Our studies preliminarily prove for the first time that ILC1s promote the activation of M1-like macrophages by secreting IFN-γ and inhibit the progression of colon cancer, which may provide insight into immunotherapeutic approaches for colon cancer.
    Keywords:  Colon cancer; Group 1 innate lymphocytes; IFN-γ; M1 macrophage; Tumor-associated macrophage
    DOI:  https://doi.org/10.1186/s13062-023-00401-w
  32. bioRxiv. 2023 Aug 22. pii: 2023.08.22.554238. [Epub ahead of print]
      HER2+ breast tumors have abundant immune-suppressive cells, including M2-type tumor associated macrophages (TAMs). While TAMs consist of the immune-stimulatory M1-type and immune-suppressive M2-type, M1/M2-TAM ratio is reduced in immune-suppressive tumors, contributing to their immunotherapy refractoriness. M1 vs. M2-TAM formation depends on differential arginine metabolism, where M1-TAMs convert arginine to nitric oxide (NO) and M2- TAMs convert arginine to polyamines (PAs). We hypothesize that such distinct arginine metabolism in M1- vs M2-TAMs is attributed to different availability of BH 4 (NO synthase cofactor) and that its replenishment would reprogram M2-TAMs to M1-TAMs. Recently, we reported that sepiapterin (SEP), the endogenous BH 4 precursor, elevates the expression of M1- TAM markers within HER2+ tumors. Here, we show that SEP restores BH 4 levels in M2-TAMs, which then redirects arginine metabolism to NO synthesis and converts M2-TAMs to M1-TAMs. The reprogrammed TAMs exhibit full-fledged capabilities of antigen presentation and induction of effector T cells to trigger immunogenic cell death of HER2+ cancer cells. This study substantiates the utility of SEP in metabolic shift of HER2+ breast tumor microenvironment as a novel immunotherapeutic strategy.
    DOI:  https://doi.org/10.1101/2023.08.22.554238
  33. Eur J Pharmacol. 2023 Sep 01. pii: S0014-2999(23)00549-6. [Epub ahead of print] 176037
      Although oroxylin A, a natural flavonoid compound, suppressed progression of hepatocellular carcinoma, whether the tumor microenvironment especially the communication between cancer cells and immune cells was under its modulation remained obscure. Here we investigated the effect of extracellular vesicles from cancer cells elicited by oroxylin A on macrophages in vitro. The data shows oroxylin A elicits apoptosis-related extracellular vesicles through caspase-3-mediated activation of ROCK1in HCC cells, which regulates M1-like polarization of macrophage. Moreover, oroxylin A downregulates the population of M2-like macrophage and promotes T cells infiltration in tumor microenvironment, accompanied by suppression of HCC development and enhancement of immune checkpoint inhibitor treatment in mice model. Mechanistically, glycolytic proteins enriched in oroxylin A-elicited extracellular vesicles from HCC cells are transferred to macrophages where ROS-dependent NLRP3 inflammasome is activated, therefore contributing to anti-tumor phenotype of macrophage. Taken together, this study highlights that oroxylin A promotes metabolic shifts between tumor cells and immune cells, facilitates to inhibit tumor development, and improves immunotherapy response in HCC model.
    Keywords:  Apoptosis; Extracellular vesicles; Glycolysis; HCC; Macrophage; Oroxylin a
    DOI:  https://doi.org/10.1016/j.ejphar.2023.176037
  34. Int J Mol Sci. 2023 Aug 30. pii: 13482. [Epub ahead of print]24(17):
      The tumor microenvironment comprises multiple cell types, like cancer cells, endothelial cells, fibroblasts, and immune cells. In recent years, there have been massive research efforts focusing not only on cancer cells, but also on other cell types of the tumor microenvironment, thereby aiming to expand and determine novel treatment options. Fibroblasts represent a heterogenous cell family consisting of numerous subtypes, which can alter immune cell fractions, facilitate or inhibit tumor growth, build pre-metastatic niches, or stabilize vessels. These effects can be achieved through cell-cell interactions, which form the extracellular matrix, or via the secretion of cytokines or chemokines. The pro- or antitumorigenic fibroblast phenotypes show variability not only among different cancer entities, but also among intraindividual sites, including primary tumors or metastatic lesions. Commonly prescribed for arterial hypertension, the inhibitors of the renin-angiotensin system have recently been described as having an inhibitory effect on fibroblasts. This inhibition leads to modified immune cell fractions and increased tissue stiffness, thereby contributing to overcoming therapy resistance and ultimately inhibiting tumor growth. However, it is important to note that the inhibition of fibroblasts can also have the opposite effect, potentially resulting in increased tumor growth. We aim to summarize the latest state of research regarding fibroblast heterogeneity and its intricate impact on the tumor microenvironment and extracellular matrix. Specifically, we focus on highlighting recent advancements in the comprehension of intraindividual heterogeneity and therapy options within this context.
    Keywords:  eCAFs; extracellular matrix; fibroblasts; iCAFs; myofibroblasts; pericytes; targeted therapy
    DOI:  https://doi.org/10.3390/ijms241713482