bims-flamet Biomed News
on Cytokines and immunometabolism in metastasis
Issue of 2023‒11‒05
34 papers selected by
Peio Azcoaga, Biodonostia HRI



  1. Rinsho Ketsueki. 2023 ;64(9): 1099-1105
      With the development of immune checkpoint inhibitors in cancer therapy, tumor microenvironments have attracted the attention of many researchers as a critical compartment of immune therapies. Immune suppressive cells such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages play important roles in regulating anti-tumor immunity in the bone marrow microenvironment in multiple myeloma, in addition to decreased immunogenicity of tumor cells and increased expression of immune checkpoint molecules. These cells are activated by numerous chemicals released by tumor cells or their surroundings, and they suppress dendritic, tumor-specific cytotoxic T, NK, and NKT cells. Multiple myeloma cells use immunological suppressive effects to escape the patients' immune surveillance system. In the future, we hope a better understanding of these immune suppressive cells leads to further improvements in immune therapies.
    Keywords:  Multiple myeloma; Myeloid-derived suppressor cell; Regulatory T cell; Tumor-associated macrophage
    DOI:  https://doi.org/10.11406/rinketsu.64.1099
  2. Front Biosci (Landmark Ed). 2023 Oct 24. 28(10): 260
      Tumor immunity is a cycle that begins with the release of antigens from tumor cells and ends with the destruction of tumor cells. High mobility group box 1 (HMGB1) is a nonhistone protein widely present in the nucleus of mammalian cells and can be released by immune cells or tumor cells. As a proinflammatory mediator or alarm protein, the activity and function of HMGB1 are determined by the environment, binding receptors, redox status and posttranslational modifications (PTMs), and HMGB1 plays a key role in inflammation and tumor immune processes. In this review, we summarize in detail the current studies on the dual role of HMGB1 in tumor immunity, focusing mainly on immunosuppressive effects, such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), as well as antitumor immunoenhancement effects, such as immunogenic cell death (ICD). Finally, we discuss the potential and challenges of HMGB1 in antitumor immunotherapy.
    Keywords:  HMGB1; ICD; MDSCs; TAMs; Tregs; tumor immunity
    DOI:  https://doi.org/10.31083/j.fbl2810260
  3. Front Med. 2023 Oct 28.
      Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.
    Keywords:  CTLA-4; PD-1; PD-L1; combined tumor therapeutic strategies; immune checkpoint blockade (ICB); metabolic reprogramming
    DOI:  https://doi.org/10.1007/s11684-023-1025-7
  4. Biochim Biophys Acta Rev Cancer. 2023 Oct 29. pii: S0304-419X(23)00156-7. [Epub ahead of print] 189007
      This review summarizes emerging evidence that the neuroendocrine system is involved in the regulation of the tumor immune microenvironment (TIME) to influence cancer progression. The basis of the interaction between the neuroendocrine system and cancer is usually achieved by the infiltration of nerve fibers into the tumor tissue, which is called neurogenesis; the migration of cancer cells toward nerve fibers, which is called perineural invasion (PNI), and the neurotransmitters. In addition to the traditional role of neurotransmitters in neural communications, neurotransmitters are increasingly recognized as mediators of crosstalk between the nervous system, cancer cells, and the immune system.Recent studies have revealed that not only nerve fibers but also cancer cells and immune cells within the TIME can secrete neurotransmitters, exerting influence on both neurons and themselves. Furthermore, immune cells infiltrating the tumor environment have been found to express a wide array of neurotransmitter receptors. Hence, targeting these neurotransmitter receptors may promote the activity of immune cells in the tumor microenvironment and exert anti-tumor immunity. Herein, we discuss the crosstalk between the neuroendocrine system and tumor-infiltrating immune cells, which may provide feasible cancer immunotherapy options.
    Keywords:  Immune cells; Immunotherapy; Nerve fiber; Neurotransmitter; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.bbcan.2023.189007
  5. J Cell Physiol. 2023 Nov 03.
      Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/-  mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.
    Keywords:  CXCL1; SPTBN1; breast cancer; hepatocellular carcinoma; macrophage phenotype switch
    DOI:  https://doi.org/10.1002/jcp.31146
  6. Clin Exp Med. 2023 Nov 01.
      Cancer immunotherapy, particularly immune checkpoint inhibitors, has opened a new avenue for cancer treatment following the durable clinical benefits. Despite the clinical successes across several cancer types, primary or acquired resistance might eventually lead to cancer progression in patients with clinical responses. Hence, to broaden the clinical applicability of these treatments, a detailed understanding of the mechanisms limiting the efficacy of cancer immunotherapy is needed. Evidence provided thus far has implicated immunosuppressive innate immune cells infiltrating the tumor microenvironment as key players in immunotherapy resistance. According to the available data, genetic alterations can shape the innate immune response to promote immunotherapy resistance and tumor progression. Herein, this review has discussed the current understanding of the underlying mechanisms where genetic alterations modulate the innate immune milieu to drive immunosuppression and immunotherapy resistance.
    Keywords:  Cancer immunotherapy; Genetic alteration; Innate immune cells; Resistance
    DOI:  https://doi.org/10.1007/s10238-023-01240-9
  7. J Immunother Cancer. 2023 10;pii: e006923. [Epub ahead of print]11(10):
      Multiplex imaging has emerged as an invaluable tool for immune-oncologists and translational researchers, enabling them to examine intricate interactions among immune cells, stroma, matrix, and malignant cells within the tumor microenvironment (TME). It holds significant promise in the quest to discover improved biomarkers for treatment stratification and identify novel therapeutic targets. Nonetheless, several challenges exist in the realms of study design, experiment optimization, and data analysis. In this review, our aim is to present an overview of the utilization of multiplex imaging in immuno-oncology studies and inform novice researchers about the fundamental principles at each stage of the imaging and analysis process.
    Keywords:  immunotherapy; tumor microenvironment
    DOI:  https://doi.org/10.1136/jitc-2023-006923
  8. Nat Commun. 2023 Oct 28. 14(1): 6885
      Bidirectional signal transduction between tumor epithelial cells and tumor microenvironment (TME) is important for tumor development. Here we show that Lin28b/let-7 pathway is indispensable for modulating the expression of Wnt5a in tumor epithelium, which could be secreted and then up-regulates Lin28b in cancer-associated fibroblasts (CAFs). Moreover, we demonstrate that Lin28b in CAFs promoted growth of PDAC by inducing cytokine PCSK9's production. Using an orthotopic mouse model of PDAC, we find that depletion of Lin28b in CAFs reduced tumor weight, highlighting the importance of Lin28b in PDAC stroma. Thus, our study shows that the Lin28b-Wnt5a axis plays a critical role in bidirectional crosstalk between pancreatic tumor epithelium and TME and results in a pro-‍tumorigenic contexture.
    DOI:  https://doi.org/10.1038/s41467-023-42508-8
  9. Front Oncol. 2023 ;13 1273154
      The onset, development, diagnosis, and treatment of cancer involve intricate interactions among various factors, spanning the realms of mechanics, physics, chemistry, and biology. Within our bodies, cells are subject to a variety of forces such as gravity, magnetism, tension, compression, shear stress, and biological static force/hydrostatic pressure. These forces are perceived by mechanoreceptors as mechanical signals, which are then transmitted to cells through a process known as mechanical transduction. During tumor development, invasion and metastasis, there are significant biomechanical influences on various aspects such as tumor angiogenesis, interactions between tumor cells and the extracellular matrix (ECM), interactions between tumor cells and other cells, and interactions between tumor cells and the circulatory system and vasculature. The tumor microenvironment comprises a complex interplay of cells, ECM and vasculature, with the ECM, comprising collagen, fibronectins, integrins, laminins and matrix metalloproteinases, acting as a critical mediator of mechanical properties and a key component within the mechanical signaling pathway. The vasculature exerts appropriate shear forces on tumor cells, enabling their escape from immune surveillance, facilitating their dissemination in the bloodstream, dictating the trajectory of circulating tumor cells (CTCs) and playing a pivotal role in regulating adhesion to the vessel wall. Tumor biomechanics plays a critical role in tumor progression and metastasis, as alterations in biomechanical properties throughout the malignant transformation process trigger a cascade of changes in cellular behavior and the tumor microenvironment, ultimately culminating in the malignant biological behavior of the tumor.
    Keywords:  biomechanics; cancer; invasion; metastasis; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2023.1273154
  10. Adv Mater. 2023 Nov 02. e2308254
      Tumor hypoxia and acidity, two general features of solid tumors, are known to have negative effect on cancer immunotherapy by directly causing dysfunction of effector immune cells and promoting suppressive immune cells inside tumors. Herein, a multifunctional colloidosomal microreactor is constructed by encapsulating catalase within calcium carbonate (CaCO3 ) nanoparticle-assembled colloidosomes (abbreviated as CaP CSs) via the classic double emulsion method. The yielded CCaP CSs exhibit well-retained proton-scavenging and hydrogen peroxide decomposition performances and can thus neutralize tumor acidity, attenuate tumor hypoxia and suppress lactate production upon intratumoral administration. Consequently, CCaP CSs treatment can activate potent antitumor immunity and thus significantly enhance the therapeutic potency of coloaded anti-programmed death-1 (anti-PD-1) antibodies in both murine subcutaneous CT26 and orthotopic 4T1 tumor xenografts. In addition, such CCaP CSs treatment also markedly reinforces the therapeutic potency of epidermal growth factor receptor-expressing chimeric antigen receptor T (EGFR-CAR-T) cells toward a human triple-negative breast cancer xenograft by promoting their tumor infiltration and effector cytokine secretion. Therefore, this study highlights that chemical modulation of tumor acidity and hypoxia can collectively reverse tumor immunosuppression and thus significantly potentiate both immune checkpoint blockade and CAR-T cell immunotherapies toward solid tumors. This article is protected by copyright. All rights reserved.
    Keywords:  CAR-T cell therapy; CaCO3 based colloidosomal microreactors; ICB immunotherapy; acidity neutralization; hypoxia attenuation
    DOI:  https://doi.org/10.1002/adma.202308254
  11. Front Immunol. 2023 ;14 1258691
      The innate immune sensing of nucleic acids using effective immunoadjuvants is critical for increasing protective immune responses against cancer. Stimulators of interferon genes (STING) and toll-like receptor 9 (TLR9) agonists are considered promising candidates in several preclinical tumor models with the potential to be used in clinical settings. However, the effects of such treatment on tumor stroma are currently unknown. In this study, we investigated the immunotherapeutic effects of ADU-S100 as a STING agonist and CpG ODN1826 as a TLR9 agonist in a preclinical model of colon carcinoma. Tumor-bearing mice were treated intratumorally on days 10 and 16 post-tumor inoculation with ADU-S100 and CpG ODN1826. Cytokine profiles in the tumor and spleen, tumor cell apoptosis, the infiltration of immune cells, and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) were evaluated to identify the immunological mechanisms after treatment. The powerful antitumor activity of single and combination treatments, the upregulation of the expression of pro-inflammatory cytokines in the tumor and spleen, and the recruitment and infiltration of the TME by immune cells revealed the synergism of immunoadjuvants in the eradication of the colon carcinoma model. Remarkably, the significant downregulation of CAFs in the TME indicated that suppression of tumorigenesis occurred after immunoadjuvant therapy. The results illustrate the potential of targeting the STING and TLR9 pathways as powerful immunoadjuvants in the treatment of preclinical colon carcinoma and the possibility of harnessing these pathways in future therapeutic approaches.
    Keywords:  CAFs; STING; TLR9; colon carcinoma; immunoadjuvants
    DOI:  https://doi.org/10.3389/fimmu.2023.1258691
  12. Nat Commun. 2023 Nov 02. 14(1): 7021
      Immune-checkpoint inhibitors (ICI) are promising modalities for treating triple negative breast cancer (TNBC). However, hyperglycolysis, a hallmark of TNBC cells, may drive tumor-intrinsic PD-L1 glycosylation and boost regulatory T cell function to impair ICI efficacy. Herein, we report a tumor microenvironment-activatable nanoassembly based on self-assembled aptamer-polymer conjugates for the targeted delivery of glucose transporter 1 inhibitor BAY-876 (DNA-PAE@BAY-876), which remodels the immunosuppressive TME to enhance ICI response. Poly β-amino ester (PAE)-modified PD-L1 and CTLA-4-antagonizing aptamers (aptPD-L1 and aptCTLA-4) are synthesized and co-assembled into supramolecular nanoassemblies for carrying BAY-876. The acidic tumor microenvironment causes PAE protonation and triggers nanoassembly dissociation to initiate BAY-876 and aptamer release. BAY-876 selectively inhibits TNBC glycolysis to deprive uridine diphosphate N-acetylglucosamine and downregulate PD-L1 N-linked glycosylation, thus facilitating PD-L1 recognition of aptPD-L1 to boost anti-PD-L1 therapy. Meanwhile, BAY-876 treatment also elevates glucose supply to tumor-residing regulatory T cells (Tregs) for metabolically rewiring them into an immunostimulatory state, thus cooperating with aptCTLA-4-mediated immune-checkpoint inhibition to abolish Treg-mediated immunosuppression. DNA-PAE@BAY-876 effectively reprograms the immunosuppressive microenvironment in preclinical models of TNBC in female mice and provides a distinct approach for TNBC immunotherapy in the clinics.
    DOI:  https://doi.org/10.1038/s41467-023-42883-2
  13. bioRxiv. 2023 Oct 21. pii: 2023.09.15.557996. [Epub ahead of print]
      Immune-based therapies induce durable remissions in subsets of patients across multiple malignancies. However, there is limited efficacy of immunotherapy in metastatic castrate-resistant prostate cancer (mCRPC), manifested by an enrichment of immunosuppressive (M2) tumor- associated macrophages (TAM) in the tumor immune microenvironment (TME). Therefore, therapeutic strategies to overcome TAM-mediated immunosuppression are critically needed in mCRPC. Here we discovered that NLR family pyrin domain containing 3 (NLRP3), an innate immune sensing protein, is highly expressed in TAM from metastatic PC patients treated with standard-of-care androgen deprivation therapy (ADT). Importantly, ex vivo studies revealed that androgen receptor (AR) blockade in TAM upregulates NLRP3 expression, but not inflammasome activity, and concurrent AR blockade/NLRP3 agonist (NLRP3a) treatment promotes cancer cell phagocytosis by immunosuppressive M2 TAM. In contrast, NLRP3a monotherapy was sufficient to enhance phagocytosis of cancer cells in anti-tumor (M1) TAM, which exhibit high de novo NLRP3 expression. Critically, combinatorial treatment with ADT/NLRP3a in a murine model of advanced PC resulted in significant tumor control, with tumor clearance in 55% of mice via TAM phagocytosis. Collectively, our results demonstrate NLRP3 as an AR-regulated "macrophage phagocytic checkpoint", inducibly expressed in TAM by ADT and activated by NLRP3a treatment, the combination resulting in TAM-mediated phagocytosis and tumor control.
    DOI:  https://doi.org/10.1101/2023.09.15.557996
  14. Cell Commun Signal. 2023 Nov 02. 21(1): 313
      The mutation of MET plays a crucial role in the initiation of cancer, while the Hedgehog (Hh) pathway also plays a significant role in cell differentiation and the maintenance of tumor stem cells. Conventional chemotherapy drugs are primarily designed to target the majority of cell populations within tumors rather than tumor stem cells. Consequently, after a brief period of remission, tumors often relapse. Moreover, the exclusive targeting of tumor stemness cell disregards the potential for other tumor cells to regain stemness and acquire drug resistance. As a result, current drugs that solely target the HGF/c-MET axis and the Hh pathway demonstrate only moderate efficacy in specific types of cancer. Mounting evidence indicates that these two pathways not only play important roles in cancer but also exert significant influence on the development of resistance to single-target therapies through the secretion of their own ligands. In this comprehensive review, we analyze and compare the potential impact of the Hh pathway on the tumor microenvironment (TME) in HGF/c-MET-driven tumor models, as well as the interplay between different cell types. Additionally, we further substantiate the potential and necessity of dual-pathway combination therapy as a critical target in MET addicted cancer treatment. Video Abstract.
    Keywords:  Cancer; Cancer-associated fibroblasts (CAFs); HGF/c-MET axis; Hh pathway; MET mutation
    DOI:  https://doi.org/10.1186/s12964-023-01333-8
  15. Front Endocrinol (Lausanne). 2023 ;14 1261283
      Endocrine therapy is the prominent strategy for the treatment of hormone-positive breast cancers. The emergence of resistance to endocrine therapy is a major health concern among hormone-positive breast cancer patients. Resistance to endocrine therapy demands the design of newer therapeutic strategies. The understanding of underlying molecular mechanisms of endocrine resistance, components of the tumor microenvironment (TME), and interaction of resistant breast cancer cells with the cellular/acellular components of the intratumoral environment are essential to formulate new therapeutic strategies for the treatment of endocrine therapy-resistant breast cancers. In the first half of the article, we have discussed the general mechanisms (including mutations in estrogen receptor gene, reregulated activation of signaling pathways, epigenetic changes, and cell cycle alteration) responsible for endocrine therapy resistance in hormone-positive breast cancers. In the latter half, we have emphasized the precise role of cellular (cancer-associated fibroblasts, immune cells, and cancer stem cells) and acellular components (collagen, fibronectin, and laminin) of TME in the development of endocrine resistance in hormone-positive breast cancers. In sum, the article provides an overview of the relationship between endocrine resistance and TME in hormone-positive breast cancers.
    Keywords:  breast cancer; drug resisitance; endocrine therapy resistance; estrogen; tumor microenvironment
    DOI:  https://doi.org/10.3389/fendo.2023.1261283
  16. ACS Cent Sci. 2023 Oct 25. 9(10): 1864-1893
      Cancer immunotherapy has become an established therapeutic paradigm in oncologic therapy, but its therapeutic efficacy remains unsatisfactory in the majority of cancer patients. Accumulating evidence demonstrates that the metabolically hostile tumor microenvironment (TME), characterized by acidity, deprivation of oxygen and nutrients, and accumulation of immunosuppressive metabolites, promotes the dysfunction of tumor-infiltrating immune cells (TIICs) and thereby compromises the effectiveness of immunotherapy. This indicates the potential role of tumor metabolic intervention in the reinvigoration of antitumor immunity. With the merits of multiple drug codelivery, cell and organelle-specific targeting, controlled drug release, and multimodal therapy, tumor metabolism-rewriting nanomedicines have recently emerged as an attractive strategy to strengthen antitumor immune responses. This review summarizes the current progress in the development of multifunctional tumor metabolism-rewriting nanomedicines for evoking antitumor immunity. A special focus is placed on how these nanomedicines reinvigorate innate or adaptive antitumor immunity by regulating glucose metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism at the tumor site. Finally, the prospects and challenges in this emerging field are discussed.
    DOI:  https://doi.org/10.1021/acscentsci.3c00702
  17. World J Gastroenterol. 2023 Oct 21. 29(39): 5435-5451
      Small extracellular vesicles (exosomes) are important components of the tumor microenvironment. They are small membrane-bound vesicles derived from almost all cell types and play an important role in intercellular communication. Exosomes transmit biological molecules obtained from parent cells, such as proteins, lipids, and nucleic acids, and are involved in cancer development. MicroRNAs (miRNAs), the most abundant contents in exosomes, are selectively packaged into exosomes to carry out their biological functions. Recent studies have revealed that exosome-delivered miRNAs play crucial roles in the tumorigenesis, progression, and drug resistance of hepatocellular carcinoma (HCC). In addition, exosomes have great industrial prospects in the diagnosis, treatment, and prognosis of patients with HCC. This review summarized the composition and function of exosomal miRNAs of different cell origins in HCC and highlighted the association between exosomal miRNAs from stromal cells and immune cells in the tumor microenvironment and the progression of HCC. Finally, we described the potential applicability of exosomal miRNAs derived from mesenchymal stem cells in the treatment of HCC.
    Keywords:  Exosomes; Extracellular vesicles; Hepatocellular carcinoma; MicroRNA; Nonparenchymal cells
    DOI:  https://doi.org/10.3748/wjg.v29.i39.5435
  18. Biomater Sci. 2023 Nov 03.
      The dense stromal barrier in pancreatic cancer tissues blocks intratumoral delivery and distribution of chemotherapeutics and therapeutic antibodies, causing poor chemoimmunotherapy responses. We designed a multi-targeted pH-sensitive liposome which encapsulates cisplatin (Pt) in its water core (denoted as ATF@Pt Lps) and shows high affinity for uPAR receptors in pancreatic cancer cells, tumor-associated macrophages, and cancer-associated fibroblasts. Systemic administration of ATF@Pt Lps enabled overcoming the central stromal cellular barrier and effective drug delivery into tumor cells, resulting in a strong therapeutic response in a Panc02 cell derived transplanted tumor mouse model. More importantly, ATF@Pt Lps degradation of collagen contributes to the infiltration of CD8+ T cells into tumors as well as an enhanced accumulation of anti PD-1 monoclonal antibodies. Furthermore, the killing of tumor cells by Pt also leads to the release of tumor antigens, which promote the proliferation of immune cells, especially CD83+ cells, Th1 CD4+ cells, and CD8+ cytotoxic T cells, that converted an immunoscore "cold" pancreatic cancer into a pro-immune "hot" tumor. A further combination with an immune checkpoint agent, anti PD-1 antibodies that inhibit PD-1, can enhance tumor specific cytotoxic T cell response. Accordingly, ATF@Pt Lps displays multi-targeting, controlled drug release, stromal disruption, enhanced penetration, killing of cancer cells, modification of the immunosuppressive microenvironment, and enhancement of immunity. This study provides important mechanistic information for the further development of a combination of ATF@Pt Lps and anti PD-1 antibodies for the effective treatment of pancreatic cancer.
    DOI:  https://doi.org/10.1039/d3bm01118f
  19. Trends Biotechnol. 2023 Oct 30. pii: S0167-7799(23)00292-5. [Epub ahead of print]
      Cancer-on-chip (CoC) models, based on microfluidic chips harboring chambers for 3D tumor-cell culture, enable us to create a controlled tumor microenvironment (TME). CoC models are therefore increasingly used to systematically study effects of the TME on the various steps in cancer metastasis. Moreover, CoC models have great potential for developing novel cancer therapies and for predicting patient-specific response to cancer treatments. We review recent developments in CoC models, focusing on three main TME components: (i) the anisotropic extracellular matrix (ECM) architectures, (ii) the vasculature, and (iii) the immune system. We aim to provide guidance to biologists to choose the best CoC approach for addressing questions about the role of the TME in metastasis, and to inspire engineers to develop novel CoC technologies.
    Keywords:  Cancer-on-chip; extracellular matrix; immune system; tumor microenvironment; vasculature
    DOI:  https://doi.org/10.1016/j.tibtech.2023.10.001
  20. Chem Biol Drug Des. 2023 Nov 02.
      Breast cancer is a common and deadly disease, so there is a constant need for research to find efficient targets and therapeutic approaches. Breast cancer can be classified on a molecular and histological base. Breast cancer can be divided into ER (estrogen receptor)-positive and ER-negative, HER2 (human epidermal growth factor receptor2)-positive and HER2-negative subtypes based on the presence of specific biomarkers. Targeting hormone receptors, such as the HER2, progesterone receptor (PR), and ER, is very significant and plays a vital role in the onset and progression of breast cancer. Endocrine treatments and HER2-targeted drugs are examples of targeted therapies now being used against these receptors. Emerging immune-based medicines with promising outcomes in the treatment of breast cancer include immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapy. It is also explored how immune cells and the tumor microenvironment affect breast cancer development and treatment response. The major biochemical pathways, signaling cascades, and DNA repair mechanisms that are involved in the development and progression of breast cancer, include the PI3K/AKT/mTOR system, the MAPK pathway, and others. These pathways are intended to be inhibited by a variety of targeted drugs, which are then delivered with the goal of restoring normal cellular function. This review aims to shed light on types of breast cancer with the summarization of different therapeutic approaches which can target different pathways for tailored medicines and better patient outcomes.
    Keywords:  biochemical pathways; biomarkers; breast cancer; estrogen receptor; human epidermal growth factor receptor; progesterone receptor
    DOI:  https://doi.org/10.1111/cbdd.14384
  21. Cell Rep. 2023 Oct 30. pii: S2211-1247(23)01355-4. [Epub ahead of print]42(11): 113343
      The intrinsic regulation of programmed death ligand-1 (PD-L1) expression remains unclear. Here, we report that zinc-finger protein 652 (ZNF652) is a potent transcription repressor of PD-L1. ZNF652 frequently experiences loss of heterozygosity (LOH) in various cancers. Higher LOH rate and lack of estrogen-inducible transcription lead to suppressed expression of ZNF652 in triple-negative breast cancer (TNBC). Mechanistically, ZNF652 is physically associated with the NuRD transcription co-repressor complex to repress a cohort of genes, including PD-L1. Overexpression of ZNF652 inhibits PD-L1 transcription, whereas depletion of ZNF652 upregulates PD-L1. Loss of ZNF652 in TNBC unleashes PD-L1-mediated immune evasion both in vitro and in vivo. Significantly, ZNF652 expression is progressively lost during breast cancer progression, and a low ZNF652 level is correlated with elevated PD-L1 expression, less infiltrated CD8+ T cells, and poor prognosis in TNBC. Our study provides insights into PD-L1 regulation and supports the pursuit of ZNF652 as a potential biomarker and drug target for breast cancer immunotherapy.
    Keywords:  CP: Cancer; PD-L1; ZNF652; breast cancer; cancer immune evasion; transcription repression
    DOI:  https://doi.org/10.1016/j.celrep.2023.113343
  22. Front Immunol. 2023 ;14 1279495
      The immune system plays a critical role in cancer, including lung cancer, which is the leading cause of cancer-related deaths worldwide. Immunotherapy, particularly immune checkpoint blockade, has revolutionized the treatment of lung cancer, but a large subset of patients either do not respond or develop resistance. Exosomes, essential mediators of cell-to-cell communication, exert a profound influence on the tumor microenvironment and the interplay between cancer and the immune system. This review focuses on the role of tumor-derived exosomes and immune cells-derived exosomes in the crosstalk between these cell types, influencing the initiation and progression of lung cancer. Depending on their cell of origin and microenvironment, exosomes can contain immunosuppressive or immunostimulatory molecules that can either promote or inhibit tumor growth, thus playing a dual role in the disease. Furthermore, the use of exosomes in lung cancer immunotherapy is discussed. Their potential applications as cell-free vaccines and drug delivery systems make them an attractive option for lung cancer treatment. Additionally, exosomal proteins and RNAs emerge as promising biomarkers that could be employed for the prediction, diagnosis, prognosis and monitoring of the disease. In summary, this review assesses the relationship between exosomes, lung cancer, and the immune system, shedding light on their potential clinical applications and future perspectives.
    Keywords:  exosome; immune cell; immunotherapy; lung cancer; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2023.1279495
  23. Cancer Immunol Res. 2023 Oct 30. OF1-OF11
      Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.
    DOI:  https://doi.org/10.1158/2326-6066.CIR-23-0399
  24. Exp Mol Med. 2023 Nov 01.
      Solid tumors are complex entities that actively shape their microenvironment to create a supportive environment for their own growth. Angiogenesis and immune suppression are two key characteristics of this tumor microenvironment. Despite attempts to deplete tumor blood vessels using antiangiogenic drugs, extensive vessel pruning has shown limited efficacy. Instead, a targeted approach involving the judicious use of drugs at specific time points can normalize the function and structure of tumor vessels, leading to improved outcomes when combined with other anticancer therapies. Additionally, normalizing the immune microenvironment by suppressing immunosuppressive cells and activating immunostimulatory cells has shown promise in suppressing tumor growth and improving overall survival. Based on these findings, many studies have been conducted to normalize each component of the tumor microenvironment, leading to the development of a variety of strategies. In this review, we provide an overview of the concepts of vascular and immune normalization and discuss some of the strategies employed to achieve these goals.
    DOI:  https://doi.org/10.1038/s12276-023-01114-w
  25. Medicine (Baltimore). 2023 Oct 27. 102(43): e35493
      Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) that is highly aggressive and hypoxic compared with other subtypes. The role of hypoxia-inducible factor 1α (HIF-1α) as a key hypoxic transcription factor in oncogenic processes has been extensively studied. Recently, it has been shown that HIF-1α regulates the complex biological processes of TNBC, such as glycolysis, angiogenesis, invasion and metastasis, BC stem cells enrichment, and immune escape, to promote TNBC survival and development through the activation of downstream target genes. This article discusses the expression of the HIF-1α transcription factor in TNBC and the Hypoxia-mediated activation of hypoxia-inducible factor-1α in triple-negative BC. It offers a fresh approach to clinical research and treatment for TNBC.
    DOI:  https://doi.org/10.1097/MD.0000000000035493
  26. Int Immunopharmacol. 2023 Oct 26. pii: S1567-5769(23)01419-4. [Epub ahead of print]125(Pt A): 111093
      Immune cell therapy with chimeric antigen receptor (CAR) T cells, which has shown promising efficacy in patients with some hematologic malignancies, has introduced several successfully approved CAR T cell therapy products. Nevertheless, despite significant advances, treatment with these products has major challenges regarding potential toxicity and sometimes fatal adverse effects for patients. These toxicities can result from cytokine release or on-target off-tumor toxicity that targets healthy host tissue following CAR T cell therapy. The present study focuses on the unexpected side effects of targeting normal host tissues with off-target toxicity. Also, recent safety strategies such as replacing or adding different components to CARs and redesigning CAR structures to eliminate the toxic impact of CAR T cells, including T cell antigen coupler (TAC), switch molecules, suicide genes, and humanized monoclonal antibodies in the design of CARs, are discussed in this review.
    Keywords:  CAR T cell; Chimeric antigen receptor (CAR); On-target off-tumor toxicity; Suicide gene
    DOI:  https://doi.org/10.1016/j.intimp.2023.111093
  27. Nat Commun. 2023 Nov 01. 14(1): 6966
      During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.
    DOI:  https://doi.org/10.1038/s41467-023-42382-4
  28. Front Immunol. 2023 ;14 1173375
      Cancer immunotherapy aims to unleash the power of the immune system against tumors without the side effects of traditional chemotherapy. Immunotherapeutic methods vary widely, but all follow the same basic principle: overcome the barriers utilized by cancers to avoid immune destruction. These approaches often revolve around classical T cells, such as with CAR T cells and neoantigen vaccines; however, the utility of the innate-like iNKT cell in cancer immunotherapy has gained significant recognition. iNKT cells parallel classic T cell recognition of peptide antigens presented on MHC through their recognition of lipid antigens presented on the MHC I-like molecule CD1d. Altered metabolism and a lipogenic phenotype are essential properties of tumor cells, representing a unique feature that may be exploited by iNKT cells. In this review, we will cover properties of iNKT cells, CD1d, and lipid antigen presentation. Next, we will discuss the cancer lipidome and how it may be exploited by iNKT cells through a window of opportunity. Finally, we will review, in detail, novel lipid antigens for iNKT cells in cancer.
    Keywords:  CD1d; NKT cells; cancer immunosurveillance; cancer immunotherapy; lipid antigens
    DOI:  https://doi.org/10.3389/fimmu.2023.1173375
  29. Front Oncol. 2023 ;13 1284926
      The significance of matrix stiffness in cancer development has been investigated in recent years. The gradual elastic force the extracellular matrix imparts to cells, known as matrix stiffness, is one of the most important types of mechanical stimulation. Increased matrix stiffness alters the biological activity of cells, which promotes the growth of numerous malignancies, including breast cancer. Comprehensive studies have demonstrated that increasing matrix stiffness activates molecular signaling pathways that are closely linked to breast cancer progression. There are many articles exploring the relationship between mechanism hardness and breast cancer, so we wanted to provide a systematic summary of recent research advances. In this review, we briefly introduce the mechanism of matrix stiffness in breast cancer, elaborate on the effect of extracellular matrix stiffness on breast cancer biological behavior and signaling pathways, and finally, we will talk about breast cancer treatment that focuses on matrix stiffness.
    Keywords:  breast cancer; extracellular matrix; matrix stiffness; mechanical stimulation; signaling pathways
    DOI:  https://doi.org/10.3389/fonc.2023.1284926
  30. J Immunother Cancer. 2023 Nov;pii: e007661. [Epub ahead of print]11(11):
      BACKGROUND: Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing.METHODS: ID8 tumor cells were injected intraperitoneally into mice. Mice were treated with Th17-DC or conventional DC (cDC) vaccine alone or with immune checkpoint blockade (ICB). Systemic immunity, tumor associated immunity, tumor size and survival were examined using a variety of experimental strategies.
    RESULTS: Th17-DC vaccines increased Th17 T cells in the tumor microenvironment, reshaped the myeloid microenvironment, and improved mouse survival compared with cDC vaccines. ICB had limited efficacy in OC, but Th17-inducing DC vaccination sensitized it to anti-PD-1 ICB, resulting in durable progression-free survival by overcoming IL-10-mediated resistance. Th17-DC vaccine efficacy, alone or with ICB, was mediated by CD4 T cells, but not CD8 T cells.
    CONCLUSIONS: These findings emphasize using biologically relevant immune modifiers, like Th17-DC vaccines, in OC treatment to reshape the tumor microenvironment and enhance clinical responses to ICB therapy.
    Keywords:  Antigens; CD4-Positive T-Lymphocytes; Immunomodulation; Immunotherapy, Active; Tumor Escape
    DOI:  https://doi.org/10.1136/jitc-2023-007661
  31. RSC Adv. 2023 Oct 26. 13(45): 31411-31425
      While immunotherapies have revolutionized treatment for other cancers, glioblastoma multiforme (GBM) patients have not shown similar positive responses. The limited response to immunotherapies is partly due to the unique challenges associated with the GBM tumor microenvironment (TME), which promotes resistance to immunotherapies, causing many promising therapies to fail. There is, therefore, an urgent need to develop strategies that make the TME immune permissive to promote treatment efficacy. Bioactive nano-delivery systems, in which the nanoparticle, due to its chemical composition, provides the pharmacological function, have recently emerged as an encouraging option for enhancing the efficacy of immunotherapeutics. These systems are designed to overcome immunosuppressive mechanisms in the TME to improve the efficacy of a therapy. This review will discuss different aspects of the TME and how they impede therapy success. Then, we will summarize recent developments in TME-modifying nanotherapeutics and the in vitro models utilized to facilitate these advances.
    DOI:  https://doi.org/10.1039/d3ra01153d
  32. Biochim Biophys Acta Rev Cancer. 2023 Oct 30. pii: S0304-419X(23)00154-3. [Epub ahead of print] 189005
      As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
    Keywords:  A2AR; Adenosine; CD39; CD73; Cancer immunotherapy; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.bbcan.2023.189005
  33. Theranostics. 2023 ;13(15): 5452-5468
      Rationale: Immuno-virotherapy has emerged as a promising approach for cancer treatment, as it directly and cytotoxically eliminates tumors with systemic immune stimulation. However, the clinical efficacy of this approach remains limited by inappropriate delivery routes, robust antiviral responses, and the tumor immunosuppressive microenvironment. Methods: To address these challenges, we propose a surface engineering strategy that masks oncolytic herpes simplex virus (oHSV) with a galactose-polyethylene-glycol (PEG) polymer chain to minimize host antiviral responses and selectively targets tumors by limiting exposure to circulation upon systemic administration. We evaluated the antitumor efficacy of glycosylated-PEG-oHSV by examining tumor growth in animal models and analyzing tumor-infiltrating CD8+T cells and NK cells in the tumor microenvironment (TME). To assess the neutralizing antibody levels after systemic administration of glycosylated-PEG-oHSV, we utilized a mouse model and measured oHSV-specific IgG. Results: We demonstrate that the glycosylated-PEG modified oHSV does not affect the replication of oHSV yet exhibits high specificity to the asialoglycoprotein receptor (ASGPR) overexpressed in hepatocellular carcinoma cells. This results in selectively targeting cancer cells and deep penetration into tumors while avoiding spreading into the brain. Our approach also effectively reduces oHSV-specific neutralizing antibody levels to mitigate host antiviral immune response. Notably, our glycosylated-PEG-oHSV alleviates the immunosuppressive microenvironment within tumors by reducing regulatory T cells, augmenting the infiltration of activated CD8+T cells and NK cells with increasing release of anti-tumor cytokines, to impede tumor progression. Conclusion: Our findings offer a widely applicable and universal strategy to enhance cancer immuno-virotherapy through systemic administration of non-genetically engineered oncolytic viruses. This approach has the potential to overcome the limitations of current immune-virotherapy strategies and may improve clinical outcomes for cancer patients.
    Keywords:  ASGPR; Oncolytic Virus; galactose-PEG polymer chain; immuno-virotherapy.; systemic delivery
    DOI:  https://doi.org/10.7150/thno.87498
  34. Mol Clin Oncol. 2023 Dec;19(6): 95
      Immunotherapy has emerged as a crucial treatment option, particularly for types of cancer that display resistance to conventional therapies. A remarkable breakthrough in this field is the development of chimeric antigen receptor (CAR) T cell therapy. CAR T cells are generated by engineering the T cells of a patient to express receptors that can recognize specific tumor antigens. This groundbreaking approach has demonstrated impressive outcomes in hematologic malignancies, including diffuse large B cell lymphoma, B cell acute lymphoblastic leukemia and multiple myeloma. Despite these significant successes, CAR T cell therapy has encountered challenges in its application against solid tumors, leading to limited success in these cases. Consequently, researchers are actively exploring novel strategies to enhance the efficacy of CAR T cells. The focus lies on augmenting CAR T cell trafficking to tumors while preventing the development of CAR T cell exhaustion and dysfunction. The present review aimed to provide a comprehensive analysis of the achievements and limitations of CAR T cell therapy in the context of cancer treatment. By understanding both the successes and hurdles, further advancements in this promising area of research can be developed. Overall, immunotherapy, particularly CAR T cell therapy, has opened up novel possibilities for cancer treatment, offering hope to patients with previously untreatable malignancies. However, to fully realize its potential, ongoing research and innovative strategies are essential in overcoming the challenges posed by solid tumors and maximizing CAR T cell efficacy in clinical settings.
    Keywords:  T cells; adoptive transfer; antigen; cancer; engineering; immunotherapy; receptor
    DOI:  https://doi.org/10.3892/mco.2023.2691