bims-flamet Biomed News
on Cytokines and immunometabolism in metastasis
Issue of 2024‒08‒18
thirty-one papers selected by
Peio Azcoaga, Biodonostia HRI



  1. Front Immunol. 2024 ;15 1444426
      Breast cancer (BC) is one of the most common and fatal malignancies among women worldwide. Circadian rhythms have emerged in recent studies as being involved in the pathogenesis of breast cancer. In this paper, we reviewed the molecular mechanisms by which the dysregulation of the circadian genes impacts the development of BC, focusing on the critical clock genes, brain and muscle ARNT-like protein 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK). We discussed how the circadian rhythm disruption (CRD) changes the tumor microenvironment (TME), immune responses, inflammation, and angiogenesis. The CRD compromises immune surveillance and features and activities of immune effectors, including CD8+ T cells and tumor-associated macrophages, that are important in an effective anti-tumor response. Meanwhile, in this review, we discuss bidirectional interactions: age and circadian rhythms, aging further increases the risk of breast cancer through reduced vasoactive intestinal polypeptide (VIP), affecting suprachiasmatic nucleus (SCN) synchronization, reduced ability to repair damaged DNA, and weakened immunity. These complex interplays open new avenues toward targeted therapies by the combination of clock drugs with chronotherapy to potentiate the immune response while reducing tumor progression for better breast cancer outcomes. This review tries to cover the broad area of emerging knowledge on the tumor-immune nexus affected by the circadian rhythm in breast cancer.
    Keywords:  aging; breast cancer; circadian rhythm; clockwork therapy; therapeutic targets in immunotherapy; tumor microenvironment; tumor-immune interactions
    DOI:  https://doi.org/10.3389/fimmu.2024.1444426
  2. Biomed Pharmacother. 2024 Aug 10. pii: S0753-3322(24)01169-7. [Epub ahead of print]178 117285
      The review article titled CD39 Transforming Cancer Therapy by Modulating Tumor Microenvironment published in June 2024 in Cancer Letters provides a comprehensive overview of CD39's multifaceted roles in cancer, particularly its influence on immunoregulation, angiogenesis, and metabolic reprogramming within the tumor microenvironment (TME). This commentary builds on that foundation by incorporating recent advancements in CD39 research, highlighting unresolved issues, and proposing future research directions. We delve into the therapeutic potential of targeting CD39, addressing clinical translation challenges, and exploring the integration of CD39-based strategies into precision oncology.
    Keywords:  Angiogenesis; CD39; Immunotherapy; Metabolic Reprogramming; Tumor Microenvironment (TME)
    DOI:  https://doi.org/10.1016/j.biopha.2024.117285
  3. Front Immunol. 2024 ;15 1431211
      Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
    Keywords:  CAR-T; hepatocellular carcinoma (HCC); immunotherapy; regulatory T cells(Treg); tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2024.1431211
  4. Zhongguo Fei Ai Za Zhi. 2024 Jul 20. 27(7): 541-549
      Lung cancer is the leading cause of cancer-related deaths worldwide, with metastasis being the primary cause of mortality in lung cancer patients, and its prevention and control efficacy remain limited. In recent years, immunotherapy has emerged as a promising direction for overcoming the bottleneck of metastasis. Macrophages, as essential components of innate immunity, participate in the entire process of tumor initiation and progression. Tumor-associated macrophages (TAMs) represent the most abundant immune population in the tumor microenvironment (TME), displaying both anti-tumor M1-like and pro-tumor M2-like phenotypes. The latter promotes tumor invasion and metastasis, angiogenesis, lymphangiogenesis, immune suppression, and reactivation of dormant disseminated tumor cells (DTCs), thereby facilitating tumor metastasis. In recent years, traditional Chinese medicine (TCM) has shown significant efficacy in inhibiting tumor metastasis and has been extensively validated. It exerts anti-tumor effects by reducing the recruitment of TAMs, inhibiting M2-like polarization, and modulating cytokines and proteins in the TME. This paper reviews the relationship between TAMs and lung cancer metastasis, elucidates the targets and mechanisms of TCM in regulating TAMs to prevent and treat lung cancer metastasis, aiming to provide insights into lung cancer prevention and treatment.
.
    Keywords:  Lung neoplasms; Metastasis; Polarization; Traditional Chinese medicine; Tumor-associated macrophages
    DOI:  https://doi.org/10.3779/j.issn.1009-3419.2024.106.14
  5. Front Mol Biosci. 2024 ;11 1379822
      Exosomes are small lipid nanovesicles with a diameter of 30-150 nm. They are present in all body fluids and are actively secreted by the majority of cells through the process of exocytosis. Exosomes play an essential role in intercellular communication and act as significant molecular carriers in regulating various physiological and pathological processes, such as the emergence of drug resistance in tumors. Tumor-associated exosomes transfer drug resistance to other tumor cells by releasing substances such as multidrug resistance proteins and miRNAs through exosomes. These substances change the cell phenotype, making it resistant to drugs. Tumor-associated exosomes also play a role in impacting drug resistance in other cells, like immune cells and stromal cells. Exosomes alter the behavior and function of these cells to help tumor cells evade immune surveillance and form a tumor niche. In addition, exosomes also export substances such as tumoricidal drugs and neutralizing antibody drugs to help tumor cells resist drug therapy. In this review, we summarize the mechanisms of exosomes in promoting drug resistance by delivering cargo in the context of the tumor microenvironment (TME).
    Keywords:  drug resistance; exosomes; immune escape; tumor; tumor environment
    DOI:  https://doi.org/10.3389/fmolb.2024.1379822
  6. Int J Mol Sci. 2024 Jul 30. pii: 8352. [Epub ahead of print]25(15):
      Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
    Keywords:  CAAs; TME; adipocyte–mesenchymal transition; adipose tissue; colorectal cancer metastases; microbiota; obesity; therapeutics
    DOI:  https://doi.org/10.3390/ijms25158352
  7. Front Immunol. 2024 ;15 1452078
      Lung cancer (LC) is one of the most common cancer worldwide. Tumor-associated macrophages (TAMs) are important component of the tumor microenvironment (TME) and are closely related to the stages of tumor occurrence, development, and metastasis. Macrophages are plastic and can differentiate into different phenotypes and functions under the influence of different signaling pathways in TME. The classically activated (M1-like) and alternatively activated (M2-like) represent the two polarization states of macrophages. M1 macrophages exhibit anti-tumor functions, while M2 macrophages are considered to support tumor cell survival and metastasis. Macrophage polarization involves complex signaling pathways, and blocking or regulating these signaling pathways to enhance macrophages' anti-tumor effects has become a research hotspot in recent years. At the same time, there have been new discoveries regarding the modulation of TAMs towards an anti-tumor phenotype by synthetic and natural drug components. Nanotechnology can better achieve combination therapy and targeted delivery of drugs, maximizing the efficacy of the drugs while minimizing side effects. Up to now, nanomedicines targeting the delivery of various active substances for reprogramming TAMs have made significant progress. In this review, we primarily provided a comprehensive overview of the signaling crosstalk between TAMs and various cells in the LC microenvironment. Additionally, the latest advancements in novel drugs and nano-based drug delivery systems (NDDSs) that target macrophages were also reviewed. Finally, we discussed the prospects of macrophages as therapeutic targets and the barriers to clinical translation.
    Keywords:  LC; NDDSs; TAMs; TME; polarization
    DOI:  https://doi.org/10.3389/fimmu.2024.1452078
  8. J Clin Invest. 2024 Jun 17. pii: e178540. [Epub ahead of print]134(12):
      Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.
    DOI:  https://doi.org/10.1172/JCI178540
  9. Oncoimmunology. 2024 ;13(1): 2388304
      The Hodgkin and Reed - Sternberg (HRS) cells in classical Hodgkin Lymphoma (cHL) actively modify the immune tumor microenvironment (TME) attracting immunosuppressive cells and expressing inhibitory molecules. A high frequency of myeloid cells in the TME is correlated with an unfavorable prognosis, but more specific and rare cell populations lack precise markers. Myeloid-derived suppressor cells (MDSCs) have been identified in the peripheral blood of cHL patients, where they appear to be correlated with disease aggressiveness. TNFRSF9 (CD137) is a T cell co-stimulator expressed by monocytic and dendritic cells. Its expression has also been described in HRS cells, where it is thought to play a role in reducing antitumor responses. Here, we perform qualitative and quantitative analyses of lymphocytic and MDSC subtypes and determine the CD137 cell distribution in cHL primary tumors using multiplex immunofluorescence and automated multispectral imaging. The results were correlated with patients' clinical features. Cells were stained with specific panels of immune checkpoint markers (PD-1, PD-L1, CD137), tumor-infiltrating T lymphocytes (CD3, PD-1), and monocytic cells/MDSCs (CD68, CD14, CD33, Arg-1, CD11b). This approach allowed us to identify distinct phenotypes and to analyze spatial interactions between immune subpopulations and tumor cells. The results confirm CD137 expression by T, monocytic and HRS cells. In addition, the expression of CD137, T exhausted cells, and monocytic MDSCs (m-MDSCs) in the vicinity of malignant HRS cells were associated with a worse prognosis. Our findings reveal new elements of the TME that mediate immune escape, and confirm CD137 as a candidate target for immunotherapy in cHL.
    Keywords:  Classical Hodgkin lymphoma; multiplex immunofluorescence; myeloid-derived suppressor cells (MDSCs); tumor microenvironment; tumor necrosis factor receptor 9 (TNFRSF9/CD137)
    DOI:  https://doi.org/10.1080/2162402X.2024.2388304
  10. Cancer Lett. 2024 Aug 08. pii: S0304-3835(24)00551-2. [Epub ahead of print] 217156
      Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
    Keywords:  Glucose metabolism; Warburg effect; cancer therapy; clinical implications; hypoxia; tumour microenvironment
    DOI:  https://doi.org/10.1016/j.canlet.2024.217156
  11. Angew Chem Int Ed Engl. 2024 Aug 15. e202412844
      Cholesterol is an essential membrane component, and the metabolites from cholesterol play important biological functions to intricately support cancer progression and dampen immune responses. Preclinical and clinical studies have demonstrated the role of cholesterol metabolism regulation on inhibiting tumor growth, remodeling the immunosuppressive tumor microenvironment (TME), and enhancing anti-tumor immunity. In this minireview, we discuss complex cholesterol metabolism in tumors, its important role in cancer progression, and its influences on immune cells in the TME. We provide an overview of recent advances in cancer treatment through regulating cholesterol metabolism. We discuss the design of cholesterol-altering multifunctional nanomaterials to regulate oxidative stress, modulate immune checkpoints, manipulate mechanical stress responses, and alter cholesterol metabolic pathways. Additionally, we examine the interactions between cholesterol metabolism regulation and established cancer treatments with the aim of identifying efficient strategies to disrupt cholesterol metabolism and synergistic combination therapies for effective cancer treatment.
    Keywords:  cholesterol * tumor therapy * nanomaterials * tumor microenvironment * immune response * immune checkpoints
    DOI:  https://doi.org/10.1002/anie.202412844
  12. ACS Pharmacol Transl Sci. 2024 Aug 09. 7(8): 2215-2236
      This Review explores how tumor-associated regulatory cells (Tregs) affect cancer immunotherapy. It shows how Tregs play a role in keeping the immune system in check, how cancers grow, and how well immunotherapy work. Tregs use many ways to suppress the immune system, and these ways are affected by the tumor microenvironment (TME). New approaches to cancer therapy are showing promise, such as targeting Treg checkpoint receptors precisely and using Fc-engineered antibodies. It is important to tailor treatments to each patient's TME in order to provide personalized care. Understanding Treg biology is essential for creating effective cancer treatments and improving the long-term outcomes of immunotherapy.
    DOI:  https://doi.org/10.1021/acsptsci.4c00156
  13. Genes Genomics. 2024 Aug 10.
      BACKGROUND: The complexity of cancer is intricately linked to its multifaceted biological processes, including the roles of the tumor microenvironment (TME) as well as genetic and metabolic regulation. Histone lactylation has recently emerged as a novel epigenetic modification mechanism that plays a pivotal role in regulating cancer initiation, proliferation, invasion, and metastasis.OBJECTIVE: This review aims to elucidate the role of histone lactylation in modulating various aspects of tumor biology, including DNA repair mechanisms, glycolytic metabolic abnormalities, functions of non-tumor cells in the TME, and the promotion of tumor inflammatory responses and immune escape. Additionally, the review explores potential therapeutic strategies targeting histone lactylation.
    METHODS: A comprehensive literature review was performed, analyzing recent findings on histone lactylation and its impact on cancer biology. This involved a systematic examination of studies focusing on biochemical pathways, cellular interactions, and clinical implications related to histone lactylation.
    RESULTS: Histone lactylation was identified as a critical regulator of tumor cell DNA repair mechanisms and glycolytic metabolic abnormalities. It also significantly influences the functions of non-tumor cells within the TME, promoting tumor inflammatory responses and immune escape. Moreover, histone lactylation acts as a multifunctional biological signaling molecule impacting immune responses within the TME. Various cell types within the TME, including T cells and macrophages, were found to regulate tumor growth and immune escape mechanisms through lactylation.
    CONCLUSION: Histone lactylation offers a novel perspective on tumor metabolism and its role in cancer development. It presents promising opportunities for the development of innovative cancer therapies. This review underscores the potential of histone lactylation as a therapeutic target, paving the way for new strategies in cancer treatment.
    Keywords:  Cancer; Glycolysis; Histone lactylation; Lipid metabolism; Tumor microenvironment
    DOI:  https://doi.org/10.1007/s13258-024-01554-2
  14. Biomaterials. 2024 Aug 08. pii: S0142-9612(24)00284-9. [Epub ahead of print]312 122750
      Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.
    Keywords:  Cancer immunotherapy; Drug delivery; Immunomodulation; Nanomedicine; Radioimmunotherapy; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.biomaterials.2024.122750
  15. Cancers (Basel). 2024 Jul 27. pii: 2676. [Epub ahead of print]16(15):
      IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
    Keywords:  Bcl3; IFNγ; IL-8; PD-L1; cancer immunotherapies; immune checkpoint blockade; ovarian cancer; tumor microenvironment
    DOI:  https://doi.org/10.3390/cancers16152676
  16. Br J Pharmacol. 2024 Aug 11.
      BACKGROUND AND PURPOSE: Although our previous data indicated that claudin 18 isoform 2 (CLDN18.2)-targeted chimeric antigen receptor (CAR) T cells displayed remarkable clinical efficacy in CLDN18.2-positive gastric cancer, their efficacy is limited in pancreatic ductal adenocarcinoma (PDAC). The tumour microenvironment (TME) is one of the main obstacles to the efficacy of CAR-T and remodelling the TME may be a possible way to overcome this obstacle. The TME of PDAC is characterized by abundant cancer-related fibroblasts (CAFs), which hinder the infiltration and function of CLDN18.2-targeted CAR-T cells. The expression of fibroblast activation protein alpha (FAP) is an important feature of active CAFs, providing potential targets for eliminating CAFs.EXPERIMENTAL APPROACH: In this study, we generated 10 FAP/CLDN 18.2 dual-targeted CAR-T cells and evaluated their anti-tumour ability in vitro and in vivo.
    KEY RESULTS: Compared with conventional CAR-T cells, some dual-targeted CAR-T cells showed improved therapeutic effects in mouse pancreatic cancers. Further, dual-targeted CAR-T cells with better anti-tumour effect could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) to improve the immunosuppressive TME, which contributes to the survival of CD8+ T cells. Moreover, dual-targeted CAR-T cells reduced the exhaustion of T cells in transforming TGF-β dependent manner.
    CONCLUSION AND IMPLICATIONS: The dual-targeted CAR-T cells obtained enhancement of T effector function, inhibition of T cell exhaustion, and improvement of tumour microenvironment. Our findings provide a theoretical rationale for dual-targeted FAP/CLDN 18.2 CAR-T cells therapy in PDAC.
    Keywords:  T cell exhaustion; cancer‐associated fibroblasts; dual‐targeted CAR‐T; pancreatic cancer
    DOI:  https://doi.org/10.1111/bph.16505
  17. Cancers (Basel). 2024 Aug 05. pii: 2769. [Epub ahead of print]16(15):
      Adipose-derived stem cells (ASCs) significantly influence tumor progression within the tumor microenvironment (TME). This review examines the pro-tumorigenic roles of ASCs, focusing on paracrine signaling, direct cell-cell interactions, and immunomodulation. ASC-mediated mitochondrial transfer through tunneling nanotubes (TNTs) and gap junctions (GJs) plays a significant role in enhancing cancer cell survival and metabolism. Cancer cells with dysfunctional mitochondria acquire mitochondria from ASCs to meet their metabolic needs and thrive in the TME. Targeting mitochondrial transfer, modulating ASC function, and influencing metabolic pathways are potential therapeutic strategies. However, challenges like TME complexity, specificity, safety concerns, and resistance mechanisms must be addressed. Disrupting the ASC-cancer cell-mitochondria axis offers a promising approach to cancer therapy.
    Keywords:  ASCs; CSCs; TME; cancer therapy; drug resistance; mitochondria
    DOI:  https://doi.org/10.3390/cancers16152769
  18. Int J Mol Sci. 2024 Aug 05. pii: 8523. [Epub ahead of print]25(15):
      The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
    Keywords:  dendritic cells; immune checkpoint inhibitors; immunotherapy; macrophages; melanoma; monocytes; neutrophils; neutrophils extracellular traps; tumor microenvironment
    DOI:  https://doi.org/10.3390/ijms25158523
  19. Acta Neuropathol Commun. 2024 Aug 16. 12(1): 133
      Tumor-associated macrophages (TAMs) residing in the tumor microenvironment (TME) are characterized by their pivotal roles in tumor progression, antitumor immunity, and TME remodeling. However, a thorough comparative characterization of tumor-TAM crosstalk across IDH-defined categories of glioma remains elusive, likely contributing to mixed outcomes in clinical trials. We delineated the phenotypic heterogeneity of TAMs across IDH-stratified gliomas. Notably, two TAM subsets with a mesenchymal phenotype were enriched in IDH-WT glioblastoma (GBM) and correlated with poorer patient survival and reduced response to anti-PD-1 immune checkpoint inhibitor (ICI). We proposed SLAMF9 receptor as a potential therapeutic target. Inference of gene regulatory networks identified PPARG, ELK1, and MXI1 as master transcription factors of mesenchymal BMD-TAMs. Our analyses of reciprocal tumor-TAM interactions revealed distinct crosstalk in IDH-WT tumors, including ANXA1-FPR1/3, FN1-ITGAVB1, VEGFA-NRP1, and TNFSF12-TNFRSF12A with known contribution to immunosuppression, tumor proliferation, invasion and TAM recruitment. Spatially resolved transcriptomics further elucidated the architectural organization of highlighted communications. Furthermore, we demonstrated significant upregulation of ANXA1, FN1, NRP1, and TNFRSF12A genes in IDH-WT tumors using bulk RNA-seq and RT-qPCR. Longitudinal expression analysis of candidate genes revealed no difference between primary and recurrent tumors indicating that the interactive network of malignant states with TAMs does not drastically change upon recurrence. Collectively, our study offers insights into the unique cellular composition and communication of TAMs in glioma TME, revealing novel vulnerabilities for therapeutic interventions in IDH-WT GBM.
    Keywords:  Glioblastoma; Immune checkpoint inhibitor; Tumor microenvironment; Tumor-TAM interaction; Tumor-associated macrophage
    DOI:  https://doi.org/10.1186/s40478-024-01837-5
  20. IUBMB Life. 2024 Aug 12.
      Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.
    Keywords:  adenosine; glioblastoma; mesenchymal stem cells (MSC); purine metabolism; tumor microenvironment (TME)
    DOI:  https://doi.org/10.1002/iub.2905
  21. Front Cell Dev Biol. 2024 ;12 1375543
      Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications.
    Keywords:  cancer-associated fibroblasts; colorectal cancer; heterogeneity; invasion; metastasis
    DOI:  https://doi.org/10.3389/fcell.2024.1375543
  22. Front Immunol. 2024 ;15 1418580
      Brain metastatic cancer poses a significant clinical challenge, with limited treatment options and poor prognosis for patients. In recent years, immunotherapy has emerged as a promising strategy for addressing brain metastases, offering distinct advantages over conventional treatments. This review explores the evolving landscape of tumor immunotherapy in the context of brain metastatic cancer, focusing on the intricate interplay between the tumor microenvironment (TME) and immunotherapeutic approaches. By elucidating the complex interactions within the TME, including the role of immune cells, cytokines, and extracellular matrix components, this review highlights the potential of immunotherapy to reshape the treatment paradigm for brain metastases. Leveraging immune checkpoint inhibitors, cellular immunotherapies, and personalized treatment strategies, immunotherapy holds promise in overcoming the challenges posed by the blood-brain barrier and immunosuppressive microenvironment of brain metastases. Through a comprehensive analysis of current research findings and future directions, this review underscores the transformative impact of immunotherapy on the management of brain metastatic cancer, offering new insights and opportunities for personalized and precise therapeutic interventions.
    Keywords:  BBB; cancer; immune checkpoint inhibitors; immunotherapy; metastatic brain tumors
    DOI:  https://doi.org/10.3389/fimmu.2024.1418580
  23. J Biol Chem. 2024 Aug 09. pii: S0021-9258(24)02171-9. [Epub ahead of print] 107670
      Mitochondrial Rho GTPases (MIRO1 and MIRO2) are primarily studied for their role as resident mitochondrial anchor proteins that facilitate mitochondria trafficking in neurons. However, it is now appreciated that these proteins have critical roles in cancer. In this review, we focus on examining the role of MIROs in cancer, including expression changes in tumors and the molecular mechanisms by which MIROs impact tumor cell growth, invasion, and metastasis. Additionally, we give an overview of how MIRO's functions in normal cells within the tumor microenvironment can support or inhibit tumor growth and metastasis. Although this is still an emerging field, the current consensus is that the MIROs primarily promote tumor progression of disparate tumor types. As mitochondrial proteins are now being targeted in the clinic, we discuss their potential as novel proteins to target in cancer.
    Keywords:  MIRO1; MIRO2; cancer; metastasis; mitochondria
    DOI:  https://doi.org/10.1016/j.jbc.2024.107670
  24. Biomed Phys Eng Express. 2024 Aug 14.
      PURPOSE: 
This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.
Methods:
This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.
Results:
This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.
Conclusion:
Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.&#xD.
    Keywords:  Cancer Modeling; Digestive Cancer; Microfluidic Systems; Organ on a Chip; Tumor Microenvironment
    DOI:  https://doi.org/10.1088/2057-1976/ad6f15
  25. Cell Mol Immunol. 2024 Aug 12.
      In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
    Keywords:  CAR-NK; CAR-T; Cancer immunotherapy; Cell therapy; Solid tumor
    DOI:  https://doi.org/10.1038/s41423-024-01207-0
  26. Zhonghua Xue Ye Xue Za Zhi. 2024 Jun 14. 45(6): 610-614
      In recent years, immunotherapy has been progressing rapidly in tumor treatment, among which, adoptive immunotherapy of immunologically active cells has also gained increasing attention in the treatment of malignant hematological diseases. Tumor-infiltrating lymphocytes are a heterogeneous class of T-cell-based lymphocytes with high heterogeneity. As an important component of the tumor microenvironment, TILs are crucial in the development of malignant tumors. TILs are a new type of immunoreactive cells discovered after lymphokine-activated killer cells, which can show high specificity and efficacy without the need for large amounts of interleukin-2. Tumor immunotherapy with TILs has shown encouraging results and is valuable in determining patient prognosis. In this paper, we review the composition and characteristics of TILs and their progress in malignant hematologic diseases.
    DOI:  https://doi.org/10.3760/cma.j.cn121090-20230912-00113
  27. Cancers (Basel). 2024 Jul 24. pii: 2629. [Epub ahead of print]16(15):
      BACKGROUND: Relapsed medulloblastoma (MB) poses a significant therapeutic challenge due to its highly immunosuppressive tumor microenvironment. Immune checkpoint inhibitors (ICIs) have struggled to mitigate this challenge, largely due to low T-cell infiltration and minimal PD-L1 expression. Identifying the mechanisms driving low T-cell infiltration is crucial for developing more effective immunotherapies.METHODS: We utilize a syngeneic mouse model to investigate the tumor immune microenvironment of MB and compare our findings to transcriptomic and proteomic data from human MB.
    RESULTS: Flow cytometry reveals a notable presence of CD45hi/CD11bhi macrophage-like and CD45int/CD11bint microglia-like tumor-associated macrophages (TAMs), alongside regulatory T-cells (Tregs), expressing high levels of the inhibitory checkpoint molecule VISTA. Compared to sham control mice, the CD45hi/CD11bhi compartment significantly expands in tumor-bearing mice and exhibits a myeloid-specific signature composed of VISTA, CD80, PD-L1, CTLA-4, MHCII, CD40, and CD68. These findings are corroborated by proteomic and transcriptomic analyses of human MB samples. Immunohistochemistry highlights an abundance of VISTA-expressing myeloid cells clustering at the tumor-cerebellar border, while T-cells are scarce and express FOXP3. Additionally, tumor cells exhibit immunosuppressive properties, inhibiting CD4 T-cell proliferation in vitro. Identification of VISTA's binding partner, VSIG8, on tumor cells, and its correlation with increased VISTA expression in human transcriptomic analyses suggests a potential therapeutic target.
    CONCLUSIONS: This study underscores the multifaceted mechanisms of immune evasion in MB and highlights the therapeutic potential of targeting the VISTA-VSIG axis to enhance anti-tumor responses.
    Keywords:  T-regulatory cells; V-domain suppressor of T-cell activation; immune checkpoint inhibitor; immune evasion; immunotherapy; medulloblastoma; tumor microenvironment; tumor-associated macrophages
    DOI:  https://doi.org/10.3390/cancers16152629
  28. Nano Converg. 2024 Aug 14. 11(1): 31
      The immunosuppressive tumor microenvironment (TME) has become a major challenge in cancer immunotherapy, with abundant tumor-associated macrophages (TAMs) playing a key role in promoting tumor immune escape by displaying an immunosuppressive (M2) phenotype. Recently, it was reported that M1 macrophage-derived nanovesicles (M1NVs) can reprogram TAMs to an anti-tumor M1 phenotype, thereby significantly alleviating the immunosuppressive TME and enhancing the anti-tumor efficacy of immunotherapy. Herein, we developed M1NVs loaded with mesoporous dopamine (MPDA) and indocyanine green (ICG), which facilitated the recruitment of M2 TAMs through synergistic photothermal and photodynamic therapy. Thereafter, M1NVs can induce M1 repolarization of TAMs, resulting in increased infiltration of cytotoxic T lymphocytes within the tumor to promote tumor regression. This study investigated the effect of phototherapy on the immune environment of liver cancer using single-cell RNA sequencing (scRNA-seq) by comparing HCC tissues before and after MPDA/ICG@M1NVs + NIR treatment. The results showed significant shifts in cell composition and gene expression, with decreases in epithelial cells, B cells, and macrophages and increases in neutrophils and myeloid cells. Additionally, gene analysis indicated a reduction in pro-inflammatory signals and immunosuppressive functions, along with enhanced B-cell function and anti-tumor immunity, downregulation of the Gtsf1 gene in the epithelial cells of the MPDA/ICG @M1NVs + NIR group, and decreased expression of the lars2 gene in immune subpopulations. Eno3 expression is reduced in M1 macrophages, whereas Clec4a3 expression is downregulated in M2 macrophages. Notably, the B cell population decreased, whereas Pou2f2 expression increased. These genes regulate cell growth, death, metabolism, and tumor environment, indicating their key role in HCC progression. This study highlights the potential for understanding cellular and molecular dynamics to improve immunotherapy.
    Keywords:  Exosome-like nanomedicine; Hepatocellular carcinoma; Single-cell RNA sequencing; Synergistic photo-immunotherapy strategy; Tumor-associated-macrophages
    DOI:  https://doi.org/10.1186/s40580-024-00441-6
  29. Front Cell Infect Microbiol. 2024 ;14 1409464
      Over the past decade, advancements in high-throughput sequencing technologies have led to a qualitative leap in our understanding of the role of the microbiota in human diseases, particularly in oncology. Despite the low biomass of the intratumoral microbiota, it remains a crucial component of the tumor immune microenvironment, displaying significant heterogeneity across different tumor tissues and individual patients. Although immunotherapy has emerged a major strategy for treating tumors, patient responses to these treatments vary widely. Increasing evidence suggests that interactions between the intratumoral microbiota and the immune system can modulate host tumor immune responses, thereby influencing the effectiveness of immunotherapy. Therefore, it is critical to gain a deep understanding of how the intratumoral microbiota shapes and regulates the tumor immune microenvironment. Here, we summarize the latest advancements on the role of the intratumoral microbiota in cancer immunity, exploring the potential mechanisms through which immune functions are influenced by intratumoral microbiota within and outside the gut barrier. We also discuss the impact of the intratumoral microbiota on the response to cancer immunotherapy and its clinical applications, highlighting future research directions and challenges in this field. We anticipate that the valuable insights into the interactions between cancer immunity and the intratumoral microbiota provided in this review will foster the development of microbiota-based tumor therapies.
    Keywords:  heterogeneity; immunomodulation; immunotherapy; intratumoral microbiota; tumor immune microenvironment
    DOI:  https://doi.org/10.3389/fcimb.2024.1409464
  30. Cancer Lett. 2024 Aug 08. pii: S0304-3835(24)00550-0. [Epub ahead of print] 217155
      Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
    Keywords:  Immunotherapy strategies; Prostate cancer; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.canlet.2024.217155
  31. Int Immunopharmacol. 2024 Aug 12. pii: S1567-5769(24)01443-7. [Epub ahead of print]141 112922
      Glioma, a complex and aggressive brain tumor, is characterized by dysregulated immune responses within the tumor microenvironment (TME). We conducted a comprehensive analysis to elucidate the roles of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in glioma progression and their impact on the immune landscape. Using transcriptome data, we stratified glioma samples based on MDSC and Treg levels, revealing significant differences in patient survival probabilities. LASSO regression identified a gene panel associated with glioma prognosis, yielding a patient-specific risk score. Multivariate Cox regression confirmed the risk score's correlation with overall survival. An ISS (immune suppressive score) system assessed the immune landscape's impact on glioma progression and therapeutic response. Functional validation showed MDSC and Treg infiltration's relevance in glioma progression and immune modulation. Hub genes in the black module, including CCL2, LINC01503, CXCL8, CLEC2B, TIMP1, and RGS2, were identified through MCODE analysis. RGS2 expression correlated with immune cell populations and varied in glioma cells. This study sheds light on MDSCs' and Tregs' roles in glioma pathogenesis, suggesting their potential as prognostic biomarkers and therapeutic targets for personalized immunotherapeutic strategies in glioma treatment.
    Keywords:  Glioma; Immunosurpression; MDSC; Prognosis; RGS2; Therapy prediction; Treg
    DOI:  https://doi.org/10.1016/j.intimp.2024.112922