bims-fragic Biomed News
on Fragmentomics
Issue of 2025–08–31
two papers selected by
Laura Mannarino, Humanitas Research



  1. Mol Oncol. 2025 Aug 26.
      We investigated whether DNA methylation and cell-free DNA (cfDNA) fragmentation patterns can improve circulating tumor DNA (ctDNA) detection in advanced pancreatic cancer. In a cohort of 33 patients, ctDNA detection was performed in a tumor-agnostic fashion using DNA methylation, cfDNA fragment lengths, and 4-mer 5' end motifs. Machine learning models estimating ctDNA levels were built for each individual detection method and their combination. All models significantly differentiated ctDNA levels in patients from healthy individuals (P < 0.001). Using the highest estimated levels in healthy volunteers as cutoffs, ctDNA was detected in 79%, 67%, 67%, and 55% of patients using methylation, fragment length, end motifs, and the combined model, respectively. Univariable Cox regression showed that all ctDNA level estimates were associated with increased hazard ratios (HR, all P < 0.001) for progression-free survival (PFS) and overall survival (OS). Multivariable Cox regression confirmed ctDNA levels as an independent predictor of PFS (HR = 1.9, P < 0.001) and OS (HR = 2.7, P < 0.001). Our findings suggest that machine learning models based on DNA methylation, cfDNA fragment lengths, and cfDNA end motifs can estimate ctDNA levels and predict clinical outcomes in advanced pancreatic cancer.
    Keywords:  DNA methylation; cfDNA; cfDNA fragmentomics; ctDNA; machine learning; pancreatic cancer
    DOI:  https://doi.org/10.1002/1878-0261.70116
  2. Proc Natl Acad Sci U S A. 2025 Aug 26. 122(34): e2426890122
    PLATO-VTE Study Group
      Multiple case-controlled studies have shown that analyzing fragmentation patterns in plasma cell-free DNA (cfDNA) can distinguish individuals with cancer from healthy controls. However, there have been few studies that investigate various types of cfDNA fragmentomics patterns in individuals with other diseases. We therefore developed a comprehensive statistic, called fragmentation signatures, that integrates the distributions of fragment positioning, fragment length, and fragment end-motifs in cfDNA. We found that individuals with venous thromboembolism, systemic lupus erythematosus, dermatomyositis, or scleroderma have cfDNA fragmentation signatures that closely resemble those found in individuals with advanced cancers. Furthermore, these signatures were highly correlated with increases in inflammatory markers in the blood. We demonstrate that these similarities in fragmentation signatures lead to high rates of false positives in individuals with autoimmune or vascular disease when evaluated using conventional binary classification approaches for multicancer earlier detection (MCED). To address this issue, we introduced a multiclass approach for MCED that integrates fragmentation signatures with protein biomarkers and achieves improved specificity in individuals with autoimmune or vascular disease while maintaining high sensitivity. Though these data put substantial limitations on the specificity of fragmentomics-based tests for cancer diagnostics, they also offer ways to improve the interpretability of such tests. Moreover, we expect these results will lead to a better understanding of the process-most likely inflammatory-from which abnormal fragmentation signatures are derived.
    Keywords:  autoimmune diseases; cancer screening; cell-free DNA; fragmentomics; rheumatology
    DOI:  https://doi.org/10.1073/pnas.2426890122