bims-glecem Biomed News
on Glycogen metabolism in exercise, cancer and energy metabolism
Issue of 2023–04–23
five papers selected by
Dipsikha Biswas, Københavns Universitet



  1. J Physiol. 2023 Apr 17.
      
    Keywords:  beta-hydroxybutyrate; glucose; glycogen; heart; ketone bodies; muscle
    DOI:  https://doi.org/10.1113/JP284561
  2. Cancer Metab. 2023 Apr 21. 11(1): 5
       BACKGROUND: Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by a defect in glucose-6-phosphatase (G6PC1) activity, which induces severe hepatomegaly and increases the risk for liver cancer. Hepatic GSD Ia is characterized by constitutive activation of Carbohydrate Response Element Binding Protein (ChREBP), a glucose-sensitive transcription factor. Previously, we showed that ChREBP activation limits non-alcoholic fatty liver disease (NAFLD) in hepatic GSD Ia. As ChREBP has been proposed as a pro-oncogenic molecular switch that supports tumour progression, we hypothesized that ChREBP normalization protects against liver disease progression in hepatic GSD Ia.
    METHODS: Hepatocyte-specific G6pc knockout (L-G6pc-/-) mice were treated with AAV-shChREBP to normalize hepatic ChREBP activity.
    RESULTS: Hepatic ChREBP normalization in GSD Ia mice induced dysplastic liver growth, massively increased hepatocyte size, and was associated with increased hepatic inflammation. Furthermore, nuclear levels of the oncoprotein Yes Associated Protein (YAP) were increased and its transcriptional targets were induced in ChREBP-normalized GSD Ia mice. Hepatic ChREBP normalization furthermore induced DNA damage and mitotic activity in GSD Ia mice, while gene signatures of chromosomal instability, the cytosolic DNA-sensing cGAS-STING pathway, senescence, and hepatocyte dedifferentiation emerged.
    CONCLUSIONS: In conclusion, our findings indicate that ChREBP activity limits hepatomegaly while decelerating liver disease progression and protecting against chromosomal instability in hepatic GSD Ia. These results disqualify ChREBP as a therapeutic target for treatment of liver disease in GSD Ia. In addition, they underline the importance of establishing the context-specific roles of hepatic ChREBP to define its therapeutic potential to prevent or treat advanced liver disease.
    Keywords:  Carbohydrate Response Element Binding Protein; Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING); Glycogen Storage Disease type 1a; Hepatomegaly; Yes Associated Protein
    DOI:  https://doi.org/10.1186/s40170-023-00305-3
  3. Biochemistry (Mosc). 2023 Jan;88(1): 1-12
      Formation and accumulation of protein aggregates adversely affect intracellular processes in living cells and are negative factors in the production and storage of protein preparations. Chemical chaperones can prevent protein aggregation, but this effect is not universal and depends on the target protein structure and kinetics of its aggregation. We studied the effect of betaine (Bet) and lysine (Lys) on thermal aggregation of muscle glycogen phosphorylase b (Phb) at 48°C (aggregation order, n = 0.5), UV-irradiated Phb (UV-Phb) at 37°C (n = 1), and apo-form of Phb (apo-Phb) at 37°C (n = 2). Using dynamic light scattering, differential scanning calorimetry, and analytical ultracentrifugation, we have shown that Bet protected Phb and apo-Phb from aggregation, but accelerated the aggregation of UV-Phb. At the same time, Lys prevented UV-Phb and apo-Phb aggregation, but increased the rate of Phb aggregation. The mechanisms of chemical chaperone action on the tertiary and quaternary structures and kinetics of thermal aggregation of the target proteins are discussed. Comparison of the effects of chemical chaperones on the proteins with different aggregation kinetics provides more complete information on the mechanism of their action.
    Keywords:  aggregation; chemical chaperone; glycogen phosphorylase b; kinetic regime
    DOI:  https://doi.org/10.1134/S0006297923010017
  4. Int J Biol Sci. 2023 ;19(6): 1894-1909
      Epithelial-mesenchymal transition (EMT) is closely associated with tumor invasion and metastasis. However, key regulators of EMT in pancreatic ductal adenocarcinoma (PDAC) need to be further studied. Bioinformatics analyses of pancreatic cancer public datasets showed that glycogen phosphorylase L (PYGL) expression is elevated in quasimesenchymal PDAC (QM-PDAC) and positively associated with EMT. In vitro cellular experiments further confirm PYGL as a crucial EMT regulator in PDAC cells. Functionally, PYGL overexpression promotes cell migration and invasion in vitro and facilitates liver metastasis in vivo, while PYGL knockdown has opposite effects. Mechanically, hypoxia induces PYGL expression in a hypoxia inducible factor 1α (HIF1α)-dependent manner and promotes glycogen accumulation. Elevated PYGL mobilizes accumulated glycogen to fuel glycolysis via its activity as a glycogen phosphorylase, thus inducing the EMT process, which could be suppressed by the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). Clinically, PYGL expression is upregulated in PDAC and correlates with its malignant features and poor prognosis. Collectively, the data from our study reveal that the hypoxia/PYGL/glycolysis-induced EMT promotes PDAC metastasis, which establishes the rational for targeting hypoxia/PYGL/glycolysis/EMT signaling pathway against PDAC.
    Keywords:  EMT; Glucose metabolism reprogramming; Hypoxia; Metastasis; PDAC; PYGL
    DOI:  https://doi.org/10.7150/ijbs.76756
  5. Biol Trace Elem Res. 2023 Apr 18.
      Metformin has been suggested to have protective effects on the central nervous system, but the mechanism is unknown. The similarity between the effects of metformin and the inhibition of glycogen synthase kinase (GSK)-3β suggests that metformin may inhibit GSK-3β. In addition, zinc is an important element that inhibits GSK-3β by phosphorylation. In this study, we investigated whether the effects of metformin on neuroprotection and neuronal survival were mediated by zinc-dependent inhibition of GSK-3β in rats with glutamate-induced neurotoxicity. Forty adult male rats were divided into 5 groups: control, glutamate, metformin + glutamate, zinc deficiency + glutamate, and zinc deficiency + metformin + glutamate. Zinc deficiency was induced with a zinc-poor pellet. Metformin was orally administered for 35 days. D-glutamic acid was intraperitoneally administered on the 35th day. On the 38th day, neurodegeneration was examined histopathologically, and the effects on neuronal protection and survival were evaluated via intracellular S-100β immunohistochemical staining. The findings were examined in relation to nonphosphorylated (active) GSK-3β levels and oxidative stress parameters in brain tissue and blood. Neurodegeneration was increased (p < 0.05) in rats fed a zinc-deficient diet. Active GSK-3β levels were increased in groups with neurodegeneration (p < 0.01). Decreased neurodegeneration, increased neuronal survival (p < 0.01), decreased active GSK-3β (p < 0.01) levels and oxidative stress parameters, and increased antioxidant parameters were observed in groups treated with metformin (p < 0.01). Metformin had fewer protective effects on rats fed a zinc-deficient diet. Metformin may exert neuroprotective effects and increase S-100β-mediated neuronal survival by zinc-dependent inhibition of GSK-3β during glutamate neurotoxicity.
    Keywords:  GSK-3β; Glutamate; Metformin; Neurotoxicity; S-100β; Zinc
    DOI:  https://doi.org/10.1007/s12011-023-03667-3