bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2021‒06‒06
twelve papers selected by
Sreeparna Banerjee
Middle East Technical University


  1. Mutat Res. 2021 Jan-Jun;787:pii: S1383-5742(21)00003-X. [Epub ahead of print]787 108366
      Breast cancer (BC) is a heterogeneous cancer with multiple subtypes affecting women worldwide. Triple-negative breast cancer (TNBC) is a prominent subtype of BC with poor prognosis and an aggressive phenotype. Recent understanding of metabolic reprogramming supports its role in the growth of cancer cells and their adaptation to their microenvironment. The Warburg effect is characterized by the shift from oxidative to reductive metabolism and external secretion of lactate. The Warburg effect prevents the use of the required pyruvate in the tricarboxylic acid (TCA) cycle progressing through pyruvate dehydrogenase inactivation. Therefore, it is a major regulatory mechanism to promote glycolysis and disrupt the TCA cycle. Glutamine (Gln) can supply the complementary energy for cancer cells. Additionally, it is the main substrate to support bioenergetics and biosynthetic activities in cancer cells and plays a vital role in a wide array of other processes such as ferroptosis. Thus, the switching of glucose to Gln in the TCA cycle toward reductive Gln metabolism is carried out by hypoxia-inducible factors (HIFs) conducted through the Warburg effect. The literature suggests that the addiction of TNBC to Gln could facilitate the proliferation and invasiveness of these cancers. Thus, Gln metabolism inhibitors, such as CB-839, could be applied to manage the carcinogenic properties of TNBC. Such inhibitors, along with conventional chemotherapy agents, can potentially improve the efficiency and efficacy of TNBC treatment. In this review, we discuss the associations between glucose and Gln metabolism and control of cancer cell growth from the perspective that Gln metabolism inhibitors could improve the current chemotherapy drug effects.
    Keywords:  Apoptosis; Ferroptosis; Glutaminase inhibitors; Glutamine metabolism; TCA cycle; Triple-negative breast cancer; Warburg effect
    DOI:  https://doi.org/10.1016/j.mrrev.2021.108366
  2. Mol Cancer Res. 2021 Jun 04. pii: molcanres.0962.2020. [Epub ahead of print]
      Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here, we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2 -mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. Implications: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis which sensitizes the cells to mTOR inhibitors.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-0962
  3. Front Pharmacol. 2021 ;12 671902
      Purpose: Glutamine synthetase (GS) is the only currently known enzyme responsible for synthesizing endogenous glutamine (Gln). GS exerts a critical role in the oncogenesis of endogenous Gln-dependent cancers, making it an attractive target for anti-tumor therapies. A mixed-function oxidation system consisting of vitamin C (VC), oxygen, and trace metals can oxidize GS and promote its degradation. The current study aims to explore the effect of pharmacological VC treatment on GS. Methods: Endogenous Gln-dependent cancer lines (breast cancer MCF7 and prostate cancer PC3) were selected to establish chronic Gln-deprived MCF7 and PC3 cell models. The expression of GS in parental and chronic Gln-deprived tumor cells exposed to VC treatment and control was determined by Western blot analysis. The anti-cancer effects of VC on parental and chronic Gln-deprived tumor cells were assessed by CCK-8 and annexin V-FITC/PI FACS assays. In addition, changes in cellular reactive oxygen species (ROS), glutathione (GSH) levels and NADPH/NADP + ratio were analyzed to explore the underlying mechanisms. Moreover, BALB/c nude mice xenografting with parental and chronic Gln-deprived prostate cancer cells were constructed to evaluate the in vivo therapeutic effect of VC. Finally, tumor 13N-ammonia uptake in mice bearing prostate cancer xenografts was analyzed following treatment with VC and the expression of GS in xenografts were detected by immunohistochemistry. Results: Cells overexpressing GS were obtained by chronic Gln deprivation. We found that the cytotoxic effect of VC on cancer cells was positively correlated with the expression of GS. Additionally, VC treatment led to a significant increase in ROS production, as well as GSH depletion and NADPH/NADP + reduction. These changes could be reversed by the antioxidant N-acetyl-L-cysteine (NAC). Furthermore, pharmacological VC treatment exhibited a more significant therapeutic effect on xenografts of prostate cancer cells overexpressing GS, that could be well monitored by 13N-ammonia PET/CT imaging. Conclusion: Our findings indicate that VC can kill cancer cells by targeting glutamine synthetase to induce oxidative stress. VC could be used as an anti-cancer treatment for endogenous glutamine-dependent cancers.
    Keywords:  13N-ammonia PET/CT; endogenous glutamine-dependent cancer; glutamine synthetase; redox stress; vitamin C
    DOI:  https://doi.org/10.3389/fphar.2021.671902
  4. Nat Cancer. 2021 Feb;2(2): 189-200
      Alterations in components of the SWI/SNF chromatin-remodeling complex occur in ~20% of all human cancers. For example, ARID1A is mutated in up to 62% of clear cell ovarian carcinoma (OCCC), a disease currently lacking effective therapies. Here we show that ARID1A mutation creates a dependence on glutamine metabolism. SWI/SNF represses glutaminase (GLS1) and ARID1A inactivation upregulates GLS1. ARID1A inactivation increases glutamine utilization and metabolism through the tricarboxylic acid cycle to support aspartate synthesis. Indeed, glutaminase inhibitor CB-839 suppresses the growth of ARID1A mutant, but not wildtype, OCCCs in both orthotopic and patient-derived xenografts. In addition, glutaminase inhibitor CB-839 synergizes with immune checkpoint blockade anti-PDL1 antibody in a genetic OCCC mouse model driven by conditional Arid1a inactivation. Our data indicate that pharmacological inhibition of glutaminase alone or in combination with immune checkpoint blockade represents an effective therapeutic strategy for cancers involving alterations in the SWI/SNF complex such as ARID1A mutations.
    DOI:  https://doi.org/10.1038/s43018-020-00160-x
  5. J Pharm Biomed Anal. 2021 May 13. pii: S0731-7085(21)00245-4. [Epub ahead of print]202 114134
      Accurate metabolome measurements are critical for improved insights into breast cancer metabolic disturbances and enhanced exploration of novel therapeutic targets. Nevertheless, conventional functional interpretation is limited by metabolite identification capacity, which diminishes the scientific value of untargeted metabolomics analyses. In this study, we conducted a metabolomics-guided global pathway meta-analysis to investigate the metabolic alterations of breast cancer. Metabolic features were directly investigated in the pathway meta-analysis to identify breast cancer-associated metabolic processes. Conventional pathway analysis was also conducted involving identified metabolites alone. Comparison of the two strategies revealed that the global pathway meta-analysis approach could avoid the loss of functionally relevant information, relative to the conventional analysis findings. Furthermore, the pathway meta-analysis accurately captured alterations in the following components of the breast cancer metabolome: central carbon metabolism, oxidative glutamine metabolism, purine metabolism, nonessential amino acid metabolism, and glutathione metabolism. There were also substantial alterations of fatty acyl carnitine species and fatty acid β-oxidation processes. These pathways contribute to breast cancer initiation, progression, metastasis, and drug resistance. In conclusion, we suggest that global pathway analysis and the conventional approach with identified metabolites should be employed together to maximize the exploration of breast cancer's metabolic landscape.
    Keywords:  Breast cancer; Cancer metabolism; Liquid chromatography–mass spectrometry; Meta-Analysis; Metabolic pathways; Untargeted metabolomics
    DOI:  https://doi.org/10.1016/j.jpba.2021.114134
  6. Hum Exp Toxicol. 2021 Jun 02. 9603271211021476
      This study aimed to investigate the anti-cancer effect of lobetyolin on breast cancer cells. Lobetyolin was incubated with MDA-MB-231 and MDA-MB-468 breast cancer cells for 24 h. Glucose uptake and the mRNA expression of GLUT4 (SLC2A4), HK2 and PKM2 were detected to assess the effect of lobetyolin on glucose metabolism. Glutamine uptake and the mRNA expression of ASCT2 (SLC1A5), GLS1, GDH and GLUL were measured to assess the effect of lobetyolin on glutamine metabolism. Annexin V/PI double staining and Hoechst 33342 staining were used to investigate the effect of lobetyolin on cell apoptosis. Immunoblot was employed to estimate the effect of lobetyolin on the expression of proliferation-related markers and apoptosis-related markers. SLC1A5 knockdown with specific siRNA was performed to study the role of ASCT2 played in the anti-cancer effect of lobetyolin on MDA-MB-231 and MDA-MB-468 breast cancer cells. C-MYC knockdown with specific siRNA was performed to study the role of c-Myc played in lobetyolin-induced ASCT2 down-regulation. Myr-AKT overexpression was performed to investigate the role of AKT/GSK3β signaling played in lobetyolin-induced down-regulation of c-Myc and ASCT2. The results showed that lobetyolin inhibited the proliferation of both MDA-MB-231 and MDA-MB-468 breast cancer cells. Lobetyolin disrupted glutamine uptake via down-regulating ASCT2. SLC1A5 knockdown attenuated the anti-cancer effect of lobetyolin. C-MYC knockdown attenuated lobetyolin-caused down-regulation of ASCT2 and Myr-AKT overexpression reversed lobetyolin-caused down-regulation of both c-Myc and ASCT2. In conclusion, the present work suggested that lobetyolin exerted anti-cancer effect via ASCT2 down-regulation-induced apoptosis in breast cancer cells.
    Keywords:  ASCT2; Lobetyolin; apoptosis; breast cancer; c-Myc; glutamine metabolism
    DOI:  https://doi.org/10.1177/09603271211021476
  7. Cell Metab. 2021 Jun 01. pii: S1550-4131(21)00227-8. [Epub ahead of print]33(6): 1071-1072
      Tumor cells utilize glucose to engage in aerobic glycolysis, fulfilling their metabolic demands for extensive proliferation. A recent study in Nature discovers that tumor-infiltrating myeloid cells exhibit a superior glucose uptake capacity over tumor cells, which present enhanced glutamine metabolism, suggesting that nutrient partitioning in the TME might be more complex than previously thought.
    DOI:  https://doi.org/10.1016/j.cmet.2021.05.010
  8. Int J Mol Sci. 2021 May 22. pii: 5465. [Epub ahead of print]22(11):
      Leukemia is persistently a significant cause of illness and mortality worldwide. Urolithins, metabolites of ellagic acid and ellagitannins produced by gut microbiota, showed better bioactive compounds liable for the health benefits exerted by ellagic acid and ellagitannins containing pomegranate and walnuts. Here, we assessed the potential antileukemic activities of both urolithin A and urolithin B. Results showed that both urolithin A and B significantly inhibited the proliferation of leukemic cell lines Jurkat and K562, among which urolithin A showed the more prominent antiproliferative capability. Further, urolithin treatment alters leukemic cell metabolism, as evidenced by increased metabolic rate and notable changes in glutamine metabolism, one-carbon metabolism, and lipid metabolism. Next, we evidenced that both urolithins equally promoted apoptosis in leukemic cell lines. Based on these observations, we concluded that both urolithin A and B alter leukemic cell metabolome, resulting in a halt of proliferation, followed by apoptosis. The data can be used for designing new combinational therapies to eradicate leukemic cells.
    Keywords:  ellagic acid; glutamine; leukemia; one-carbon metabolism; urolithin
    DOI:  https://doi.org/10.3390/ijms22115465
  9. Int J Mol Sci. 2021 May 11. pii: 5070. [Epub ahead of print]22(10):
      Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.
    Keywords:  glutaminolysis; lipidomics; metabolomics; pancreatic cancer
    DOI:  https://doi.org/10.3390/ijms22105070
  10. Front Cell Dev Biol. 2021 ;9 639111
      Metabolic reprogramming is a vital factor in the development of many types of cancer, including colon cancer. Serine metabolic reprogramming is a major feature of tumor metabolism. Yes-associated protein (YAP) participates in organ size control and tumorigenesis. However, the relationship between YAP and serine metabolism in colon cancer is unclear. In this study, RNA sequencing and metabolomics analyses indicated significant enrichment of the glycine, serine, and threonine metabolism pathways in serine starvation-resistant cells. Short-term serine deficiency inhibited YAP activation, whereas a prolonged response dephosphorylated YAP and promoted its activity. Mechanistically, USP7 increases YAP stability under increased serine conditions by regulating deubiquitination. Verteporfin (VP) effectively inhibited the proliferation of colon cancer cells and organoids and could even modulate serine metabolism by inhibiting USP7 expression. Clinically, YAP was significantly activated in colon tumor tissues and positively correlated with the expression of phosphoglycerate dehydrogenase (PHGDH) and USP7. Generally, our study uncovered the mechanism by which serine metabolism regulates YAP via USP7 and identified the crucial role of YAP in the regulation of cell proliferation and tumor growth; thus, VP may be a new treatment for colon cancer.
    Keywords:  USP7; YAP; colon cancer; organoid; serine metabolism
    DOI:  https://doi.org/10.3389/fcell.2021.639111
  11. Cell Rep. 2021 Jun 01. pii: S2211-1247(21)00551-9. [Epub ahead of print]35(9): 109202
      Metabolic plasticity in cancer cells makes use of metabolism-targeting agents very challenging. Drug-induced metabolic rewiring may, however, uncover vulnerabilities that can be exploited. We report that resistance to glycolysis inhibitor 3-bromopyruvate (3-BrPA) arises from DNA methylation in treated cancer cells and subsequent silencing of the monocarboxylate transporter MCT1. We observe that, unexpectedly, 3-BrPA-resistant cancer cells mostly rely on glycolysis to sustain their growth, with MCT4 as an essential player to support lactate flux. This shift makes cancer cells particularly suited to adapt to hypoxic conditions and resist OXPHOS inhibitors and anti-proliferative chemotherapy. In contrast, blockade of MCT4 activity in 3-BrPA-exposed cancer cells with diclofenac or genetic knockout, inhibits growth of derived spheroids and tumors in mice. This study supports a potential mode of collateral lethality according to which metabolic adaptation of tumor cells to a first-line therapy makes them more responsive to a second-line treatment.
    Keywords:  3-bromopyruvate; diclofenac; drug repurposing; epigenetic; metabolic plasticity; methylation; monocarboxylate transporter; tumor metabolism
    DOI:  https://doi.org/10.1016/j.celrep.2021.109202
  12. Front Pharmacol. 2021 ;12 671328
      The emergence of secondary resistance is the main failure cause of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) as a targeted therapy for non-small cell lung cancer (NSCLC). EGFR mutations of NSCLC cells can markedly increase glutamine transporter (SLC1A5) expression, thereby increasing glutamine metabolism. Glutamine metabolites can activate EGFR downstream signals, including mTOR, ERK1/2, STAT3, etc., which is an important cause for the decreased sensitivity of NSCLC to EGFR-TKIs. CCK8 and Annexin V/PI assays were conducted to detect the effects of Almonertinib and/or V9302 on the proliferation and apoptosis of NSCLC cells. Proteomics was used to determine the effect of Almonertinib on energy metabolism-related proteins in NSCLC. siRNA transfection was performed to study the effect of SLC1A5 down-regulation on cell proliferation. In addition, the effects of drugs on colony formation capacity were determined by colony formation assay. Immunofluorescence and Western blot were utilized to detect the apoptosis- and autophagy-related proteins expression. DAPI staining was utilized to detect the effect of drugs on the nucleus. Transmission electron microscope was used to observe the changes of submicroscopic structure such as autophagosomes and nucleus of cells. mCherry-GFP-LC3B tandem fluorescent protein was to used to detect the level of autophagy flux. Tumor-bearing nude mouse model was utilized to detect the effect of V9302 on the anti-tumor effect of Almonertinib in vivo. As a result, Almonertinib suppressed H1975 and A549 cell proliferation depended on its dosage and treatment duration, and it also induced apoptosis. A549 cells with wild-type EGFR had lower sensitivity to Almonertinib. The expression of SLC1A5 was up-regulated by stimulating with low concentration of Almonertinib in NSCLC cells. SLC1A5 was highly expressed in A549 cells with wild-type EGFR. Glutamine deletion or SLC1A5 inhibition/silencing inhibited the proliferation of NSCLC cells, and decreased cellular glutamine uptake. The combination of SLC1A5 inhibitor V9302 and Almonertinib had a synergistic inhibitory effect on the proliferation of NSCLC. V9302 enhanced the effect of Almonertinib in apoptosis-inducing in NSCLC cells. The combination of V9302 and Almonertinib might induce apoptosis by inhibiting autophagy.
    Keywords:  EGFR-TKI; SLC1A5; almonertinib; apoptosis; autophagy
    DOI:  https://doi.org/10.3389/fphar.2021.671328