bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2022–03–20
twelve papers selected by
Sreeparna Banerjee, Middle East Technical University



  1. J Cell Mol Med. 2022 Mar 13.
      Angiopoietin-like protein (ANGPTL) 4 is a key factor in the regulation of lipid and glucose metabolism in metabolic diseases. ANGPTL4 is highly expressed in various cancers, but the regulation of energy metabolism in tumours remains to be determined. This study explored the role of ANGPTL4 in aerobic glycolysis, glutamine consumption and fatty acid oxidation in nonsmall cell lung cancer (NSCLC) cells. Two NSCLC cell lines (A549 and H1299) were used to investigate the role of ANGPTL4 in energy metabolism by tracer techniques and with Seahorse XF technology in ANGPTLs4 knockdown cells. RNA microarrays and specific inhibitors were used to identify targets in ANGPTLs4-overexpressing cells. The results showed that knockdown of ANGPTLs4 could inhibit energy metabolism and proliferation in NSCLC. ANGPTLs4 had no significant effect on glycolysis but affected glutamine consumption and fatty acid oxidation. Knockdown of ANGPTLs4 also significantly inhibited tumour metastasis and energy metabolism in mice and had a weak effect on glycolysis. RNA microarray analysis showed that ANGPTLs4 significantly affected glutaminase (GLS) and carnitine palmitoyl transferase 1 (CPT1). ANGPTLs4-overexpressing cells were exposed to a glutamine deprivation environment, and cell proliferation and energy metabolism were significantly decreased but still differed from normal NSCLC cells. Treatment of ANGPTLs4-overexpressing cells with GLS and CPT1 inhibitors simultaneously prevented the regulatory effects on cell proliferation and energy metabolism. ANGPTLs4 could promote glutamine consumption and fatty acid oxidation but not glycolysis or accelerate energy metabolism in NSCLC.
    Keywords:  ANGPTL4; NSCLC; aerobic glycolysis; fatty acid oxidation; glutamine
    DOI:  https://doi.org/10.1111/jcmm.16879
  2. Arch Gynecol Obstet. 2022 Mar 14.
       BACKGROUND: Circular RNAs (circRNAs) have been reported to function as vital regulators in cancers, including triple-negative breast cancer (TNBC). This study aimed to explore the role of circ_0062558 in TNBC.
    METHODS: The real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to quantify the expressions of circ_0062558, microRNA-876-3p (miR-876-3p), and solute carrier family 1 (neutral amino acid transporter), member 5 (SLC1A5) in TNBC tissues and cells. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT), thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and Transwell assays were employed for cell phenotype analyses. Protein expression was tested by western blot analysis. Dual-luciferase reporter was used to confirm the association among circ_0062558, miR-876-3p, and SLC1A5 in TNBC. Xenograft experiments were performed to elucidate the function of circ_0062558 in vivo.
    RESULTS: TNBC tissues and cells showed the higher level of circ_0062558 when compared with control samples. Downregulation of circ_0062558 inhibited proliferation, migration, invasion, and glutamine metabolism, while enhanced apoptosis of TNBC cells, and silencing of circ_0062558 also inhibited the growth of tumor in vivo. MiR-876-3p was confirmed as a target of circ_0062558, and circ_0062558 knockdown repressed TNBC cell malignant behaviors by increasing miR-876-3p. Furthermore, miR-876-3p inhibited malignant behaviors of TNBC cells by down-regulating SLC1A5, a newly identified target of miR-876-3p.
    CONCLUSION: Circ_0062558 promoted TNBC progression by enhancing proliferation, survival, migration, invasion, and glutamine metabolism via miR-876-3p/SLC1A5 axis, which was helpful for understanding the carcinogenic roles of circ_0062558.
    Keywords:  CircRNA; Circ_0062558; MiR-876-3p; SLC1A5; TNBC
    DOI:  https://doi.org/10.1007/s00404-022-06481-9
  3. Trends Biochem Sci. 2022 Mar 12. pii: S0968-0004(22)00065-2. [Epub ahead of print]
      Tricarboxylic acid (TCA) cycle is a major hub for catabolic and anabolic reactions, yet cellular metabolic adaptations following its inhibition are largely unknown. Using multi-tiered omics approaches, Ryan et al. have shown convergent activation of the integrated stress response (ISR) through ATF4-mediated rewiring of cellular amino acid and redox metabolic pathways.
    Keywords:  ATF4; TCA cycle; fumarate hydratase; glutathione synthesis; integrated stress response; succinate dehydrogenase
    DOI:  https://doi.org/10.1016/j.tibs.2022.03.006
  4. Cell Rep. 2022 Mar 15. pii: S2211-1247(22)00247-9. [Epub ahead of print]38(11): 110511
      An epithelial-to-mesenchymal transition (EMT) phenotype with cancer stem cell-like properties is a critical feature of aggressive/metastatic tumors, but the mechanism(s) that promote it and its relation to metabolic stress remain unknown. Here we show that Collapsin Response Mediator Protein 2A (CRMP2A) is unexpectedly and reversibly induced in cancer cells in response to multiple metabolic stresses, including low glucose and hypoxia, and inhibits EMT/stemness. Loss of CRMP2A, when metabolic stress decreases (e.g., around blood vessels in vivo) or by gene deletion, induces extensive microtubule remodeling, increased glutamine utilization toward pyrimidine synthesis, and an EMT/stemness phenotype with increased migration, chemoresistance, tumor initiation capacity/growth, and metastatic potential. In a cohort of 27 prostate cancer patients with biopsies from primary tumors and distant metastases, CRMP2A expression decreases in the metastatic versus primary tumors. CRMP2A is an endogenous molecular brake on cancer EMT/stemness and its loss increases the aggressiveness and metastatic potential of tumors.
    Keywords:  cytoskeleton; metabolism; metastasis; microtubule; mitochondria; stress
    DOI:  https://doi.org/10.1016/j.celrep.2022.110511
  5. Front Oncol. 2022 ;12 858462
      SLC7A11/xCT is an antiporter that mediates the uptake of extracellular cystine in exchange for glutamate. Cystine is reduced to cysteine, which is a rate-limiting precursor in glutathione synthesis; a process that protects cells from oxidative stress and is, therefore, critical to cell growth, proliferation, and metabolism. SLC7A11 is expressed in different tissues and plays diverse functional roles in the pathophysiology of various diseases, including cancer, by regulating the processes of redox homeostasis, metabolic flexibility/nutrient dependency, immune system function, and ferroptosis. SLC7A11 expression is associated with poor prognosis and drug resistance in cancer and, therefore, represents an important therapeutic target. In this review, we discuss the molecular functions of SLC7A11 in normal versus diseased tissues, with a special focus on how it regulates gastrointestinal cancers. Further, we summarize current therapeutic strategies targeting SLC7A11 as well as novel avenues for treatment.
    Keywords:  Cancer therapy; SLC7A11 (xCT); cysteine (Cys); ferroptosis; gastrointestinal tract; metabolism; oxidative stress
    DOI:  https://doi.org/10.3389/fonc.2022.858462
  6. Trends Cell Biol. 2022 Mar 14. pii: S0962-8924(22)00036-8. [Epub ahead of print]
      Gene transcription and cell metabolism are two fundamental biological processes that mutually regulate each other. Upregulated or altered expression of glucose metabolic genes in glycolysis and gluconeogenesis is a major driving force of enhanced aerobic glycolysis in tumor cells. Importantly, glycolytic and gluconeogenic enzymes in tumor cells acquire moonlighting functions and directly regulate gene expression by modulating chromatin or transcriptional complexes. The mutual regulation between cellular metabolism and gene expression in a feedback mechanism constitutes a unique feature of tumor cells and provides specific molecular and functional targets for cancer treatment.
    Keywords:  cancer; gene expression; gluconeogenesis; glycolysis; metabolism
    DOI:  https://doi.org/10.1016/j.tcb.2022.02.003
  7. Mol Ther Methods Clin Dev. 2022 Mar 10. 24 380-393
      Ex vivo expansion conditions used to generate T cells for immunotherapy are thought to adopt metabolic phenotypes that impede therapeutic efficacy in vivo. The comparison of five different culture media used for clinical T cell expansion revealed unique optima based on different output variables, including proliferation, differentiation, function, activation, and mitochondrial phenotypes. The extent of proliferation and function depended on the culture media rather than stimulation conditions. Moreover, the expanded T cell end products adapted their metabolism when switched to a different media formulation, as shown by glucose and glutamine uptake and patterns of glucose isotope labeling. However, adoption of these metabolic phenotypes was uncoupled to T cell function. Expanded T cell products cultured in ascites from ovarian cancer patients displayed suppressed mitochondrial activity and function irrespective of the ex vivo expansion media. Thus, ex vivo T cell expansion media have profound impacts on metabolism and function.
    Keywords:  13C tracer analysis; T cell expansion; cell-based immunotherapy; culture media; metabolism; phenotype
    DOI:  https://doi.org/10.1016/j.omtm.2022.02.004
  8. EMBO J. 2022 Mar 14. e109365
      Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung. This cell fate conversion is mediated via distinctive transitional cell states of damage-associated transient progenitors (DATPs), recently shown to emerge during injury repair in mouse and human lungs. We further describe a YAP/TAZ signaling cascade to be integral for the fate conversion of secretory cells into AT1 fate, by modulating mTORC1/ATF4-mediated amino acid metabolism in vivo. Importantly, we observed aberrant activation of the YAP/TAZ-mTORC1-ATF4 axis in the altered airway epithelium of bronchiolitis obliterans syndrome, including substantial emergence of DATPs and AT1 cells with severe pulmonary fibrosis. Genetic and pharmacologic inhibition of mTORC1 activity suppresses lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases.
    Keywords:  Damage-Associated Transient Progenitors; Hippo-YAP signaling; essential amino acid metabolism; mTORC1-ATF4 axis; pulmonary fibrosis and bronchiolitis obliterans
    DOI:  https://doi.org/10.15252/embj.2021109365
  9. BMC Genomics. 2022 Mar 16. 23(1): 213
       BACKGROUND: Respectively, prostate cancer (PCa) and breast cancer (BC) are the second most and most commonly diagnosed cancer in men and women, and they account for a majority of cancer-related deaths world-wide. Cancer cells typically exhibit much-facilitated growth that necessitates upregulated glycolysis and augmented amino acid metabolism, that of glutamine and aspartate in particular, which is tightly coupled with an increased flux of the tricarboxylic acid (TCA) cycle. Epidemiological studies have exploited metabolomics to explore the etiology and found potentially effective biomarkers for early detection or progression of prostate and breast cancers. However, large randomized controlled trials (RCTs) to establish causal associations between amino acid metabolism and prostate and breast cancers have not been reported.
    OBJECTIVE: Utilizing two-sample Mendelian randomization (MR), we aimed to estimate how genetically predicted glutamate and aspartate levels could impact upon prostate and breast cancers development.
    METHODS: Single nucleotide polymorphisms (SNPs) as instrumental variables (IVs), associated with the serum levels of glutamate and aspartate were extracted from the publicly available genome-wide association studies (GWASs), which were conducted to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults; and the glutamate and aspartate we have chosen were two of 644 metabolites. The summary statistics for the largest and latest GWAS datasets for prostate cancer (61,106 controls and 79,148 cases) were from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium, and datasets for breast cancer (113,789 controls and 133,384 cases) were from Breast Cancer Association Consortium (BCAC). The study was performed through two-sample MR method.
    RESULTS: Causal estimates were expressed as odds ratios (OR) and 95% confidence interval (CI) per standard deviation increment in serum level of aspartate or glutamate. Aspartate was positively associated with prostate cancer (Effect = 1.043; 95% confidence interval, 1.003 to 1.084; P = 0.034) and breast cancer (Effect = 1.033; 95% confidence interval, 1.004 to 1.063; P = 0.028); however, glutamate was neither associated with prostate cancer nor with breast cancer. The potential causal associations were robust to the sensitivity analysis.
    CONCLUSIONS: Our study found that the level of serum aspartate could serve as a risk factor that contributed to the development of prostate and breast cancers. Efforts on a detailed description of the underlying biochemical mechanisms would be extremely valuable in early assessment and/or diagnosis, and strategizing clinical intervention, of both cancers.
    Keywords:  Aspartate; Breast cancer; Glutamate; Mendelian randomization; Prostate cancer
    DOI:  https://doi.org/10.1186/s12864-022-08442-7
  10. Int J Mol Med. 2022 May;pii: 65. [Epub ahead of print]49(5):
      Radiotherapy is an essential and effective treatment modality for cancer. Excessive levels of reactive oxygen species (ROS) induced by ionizing radiation disrupt the redox homeostasis and lead to oxidative stress that may result in cell death. However, the tumor cell microenvironment is dynamic and responds to radiotherapy by activating numerous cellular signaling pathways. By scavenging excess ROS, the activity levels of the endogenous antioxidant enzymes result in radioresistance and worsen the clinical outcomes. To assess the full potential of radiotherapy, it is essential to explore the underlying mechanisms of oxidative stress in radiotherapy for potential target identification. The present review article summarized recent data demonstrating nuclear factor‑erythroid factor 2‑related factor 2 (Nrf2) as a powerful transcription factor and one of the major cellular defense mechanisms that protect against oxidative stress in response to radiotherapy; the glutathione (GSH) and thioredoxin (Trx) systems complement each other and are effective antioxidant mechanisms associated with the protection of cancer cells from radiation damage. In addition, it is suggested that dual targeting to inhibit GSH and Trx enzymes may be a potential strategy for the development of radiosensitive and radioprotective drugs.
    Keywords:  glutathione metabolism; oxidative stress; radiosensitivity; radiotherapy; thioredoxin
    DOI:  https://doi.org/10.3892/ijmm.2022.5121
  11. PLoS Comput Biol. 2022 Mar 14. 18(3): e1009395
      Synthetic Lethality (SL) is currently defined as a type of genetic interaction in which the loss of function of either of two genes individually has limited effect in cell viability but inactivation of both genes simultaneously leads to cell death. Given the profound genomic aberrations acquired by tumor cells, which can be systematically identified with -omics data, SL is a promising concept in cancer research. In particular, SL has received much attention in the area of cancer metabolism, due to the fact that relevant functional alterations concentrate on key metabolic pathways that promote cellular proliferation. With the extensive prior knowledge about human metabolic networks, a number of computational methods have been developed to predict SL in cancer metabolism, including the genetic Minimal Cut Sets (gMCSs) approach. A major challenge in the application of SL approaches to cancer metabolism is to systematically integrate tumor microenvironment, given that genetic interactions and nutritional availability are interconnected to support proliferation. Here, we propose a more general definition of SL for cancer metabolism that combines genetic and environmental interactions, namely loss of gene functions and absence of nutrients in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase (DHFR) inhibition in different environments. Finally, our approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.
    DOI:  https://doi.org/10.1371/journal.pcbi.1009395
  12. Front Pharmacol. 2022 ;13 816133
      Oral glutamine (Gln) has been widely used in gastrointestinal (GI) clinical practice, but it is unclear if Ca2+ regulates intestinal Gln transport, although both of them are essential nutrients for mammals. Chambers were used to determine Gln (25 mM)-induced I sc through Na+/Gln co-transporters in the small intestine in the absence or the presence of selective activators or blockers of ion channels and transporters. Luminal but not serosal application of Gln induced marked intestinal I sc , especially in the distal ileum. Lowering luminal Na+ almost abolished the Gln-induced ileal I sc , in which the calcium-sensitive receptor (CaSR) activation were not involved. Ca2+ removal from both luminal and serosal sides of the ileum significantly reduced Gln- I sc . Blocking either luminal Ca2+ entry via the voltage-gated calcium channels (VGCC) or endoplasmic reticulum (ER) release via inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) attenuated the Gln-induced ileal I sc , Likewise, blocking serosal Ca2+ entry via the store-operated Ca2+ entry (SOCE), TRPV1/2 channels, and Na+/Ca2+ exchangers (NCX) attenuated the Gln-induced ileal I sc . In contrast, activating TRPV1/2 channels enhanced the Gln-induced ileal I sc . We concluded that Ca2+ signaling is critical for intestinal Gln transport, and multiple plasma membrane Ca2+-permeable channels and transporters play roles in this process. The Ca2+ regulation of ileal Na+/Gln transport expands our understanding of intestinal nutrient uptake and may be significant in GI health and disease.
    Keywords:  CICR; NCX; SOCE; TRPV; VGCC; calcium signaling
    DOI:  https://doi.org/10.3389/fphar.2022.816133