bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2022–05–08
ten papers selected by
Sreeparna Banerjee, Middle East Technical University



  1. Proc Natl Acad Sci U S A. 2022 May 10. 119(19): e2120595119
      SignificanceGlutamine is the most abundant amino acid in human plasma, although it is challenging to determine glutamine's metabolic fate noninvasively. In this work, we utilize established chemical methods to develop a platform for imaging glutamine metabolism using hyperpolarized magnetic resonance imaging. Using this strategy, we are able to spatially measure glutaminolysis in vivo as well as develop a biomarker for the inhibition of glutaminase. Combining this biomarker with isotope tracing metabolomics connects this inhibition to reduced glutamine contribution to the tricarboxylic acid cycle. This provides an approach for future imaging of glutamine metabolism in humans.
    Keywords:  cancer metabolism; magnetic resonance imaging; metabolic imaging; pancreatic cancer
    DOI:  https://doi.org/10.1073/pnas.2120595119
  2. J Nanobiotechnology. 2022 May 06. 20(1): 216
      Blockade of programmed cell death 1 ligand (PD-L1) has been used to treat triple-negative breast cancer (TNBC), and various strategies are under investigation to improve the treatment response rate. Inhibition of glutamine metabolism can reduce the massive consumption of glutamine by tumor cells and meet the demand for glutamine by lymphocytes in tumors, thereby improving the anti-tumor effect on the PD-L1 blockade therapy. Here, molybdenum disulfide (MoS2) was employed to simultaneously deliver anti-PDL1 antibody (aPDL1) and V9302 to boost the anti-tumor immune response in TNBC cells. The characterization results show that MoS2 has a dispersed lamellar structure with a size of about 181 nm and a size of 232 nm after poly (L-lysine) (PLL) modification, with high stability and biocompatibility. The loading capacity of aPDL1 and V9302 are 3.84% and 24.76%, respectively. V9302 loaded MoS2 (MoS2-V9302) can effectively kill 4T1 cells and significantly reduce glutamine uptake of tumor cells. It slightly increases CD8+ cells in the tumor and promotes CD8+ cells from the tumor edge into the tumor core. In vivo studies demonstrate that the combination of aPDL1 and V9302 (MoS2-aPDL1-V9302) can strongly inhibit the growth of TNBC 4T1 tumors. Interestingly, after the treatment of MoS2-aPDL1-V9302, glutamine levels in tumor interstitial fluid increased. Subsequently, subtypes of cytotoxic T cells (CD8+) in the tumors were analyzed according to two markers of T cell activation, CD69, and CD25, and the results reveal a marked increase in the proportion of activated T cells. The levels of cytokines in the corresponding tumor interstitial fluid are also significantly increased. Additionally, during the treatment, the body weights of the mice remain stable, the main indicators of liver and kidney function in the blood do not increase significantly, and there are no obvious lesions in the main organs, indicating low systemic toxicity. In conclusion, our study provides new insights into glutamine metabolism in the tumor microenvironment affects immune checkpoint blockade therapy in TNBC, and highlights the potential clinical implications of combining glutamine metabolism inhibition with immune checkpoint blockade in the treatment of TNBC.
    Keywords:  Anti-PDL1; Glutamine metabolism inhibitor; MoS2 nanosheets; Triple-negative breast cancer; V9302
    DOI:  https://doi.org/10.1186/s12951-022-01424-7
  3. Cell Metab. 2022 Apr 23. pii: S1550-4131(22)00130-9. [Epub ahead of print]
      The tumor microenvironment (TME) contains a rich source of nutrients that sustains cell growth and facilitate tumor development. Glucose and glutamine in the TME are essential for the development and activation of effector T cells that exert antitumor function. Immunotherapy unleashes T cell antitumor function, and although many solid tumors respond well, a significant proportion of patients do not benefit. In patients with KRAS-mutant lung adenocarcinoma, KEAP1 and STK11/Lkb1 co-mutations are associated with impaired response to immunotherapy. To investigate the metabolic and immune microenvironment of KRAS-mutant lung adenocarcinoma, we generated murine models that reflect the KEAP1 and STK11/Lkb1 mutational landscape in these patients. Here, we show increased glutamate abundance in the Lkb1-deficient TME associated with CD8 T cell activation in response to anti-PD1. Combination treatment with the glutaminase inhibitor CB-839 inhibited clonal expansion and activation of CD8 T cells. Thus, glutaminase inhibition negatively impacts CD8 T cells activated by anti-PD1 immunotherapy.
    Keywords:  KEAP1; KRAS; STK11/Lkb1; glutaminase; glutamine; immune microenvironment; immunotherapy; lung adenocarcinoma; metabolism
    DOI:  https://doi.org/10.1016/j.cmet.2022.04.003
  4. ACS Appl Mater Interfaces. 2022 May 05.
      Glucose and glutamine are two principal nutrients in mammalian cells that provide energy and biomass for cell growth and proliferation. Especially in cancer cells, glutamine could be a main alternative for energy and biomass supply once glucose metabolism is suppressed. Therefore, single inhibition of enzymes in either glucose metabolism or glutaminolysis, though maybe efficient in vitro, is far from being satisfactory for efficient in vivo cancer therapy. Here, we proposed a new strategy for dual inhibitions on both glucose and glutamine metabolisms concurrently by silencing mutated gene Kras and glutaminase 1 (GLS1) via nanomaterial-based siKras and siGLS1 delivery, rather than conventional highly toxic chemodrugs. Such a combination therapy could overcome the challenge that glucose and glutamine are alternatives to each other in the biosynthesis and energy production for cancer cells, resulting in much elevated treatment efficacy. In addition, layered double hydroxide (LDH), the siRNA carrier, enables an enhanced gene delivery efficiency compared to the commercial transfection agent Lipofectamine 2000. Briefly, Mg-Al LDH nanosheets, loaded with siKras and siGLS1 onto their surfaces by electrostatic adsorption, could release siRNA from lysosomes into the cytoplasm via the proton sponge effect of LDH, favoring the siRNA stability and gene silencing efficiency enhancements. The thus released siRNA could downregulate the expressions of Kras, GLS1, and other enzymes involved in glucose metabolism, resulting in the downregulations of ATP and other metabolites. Such a biosafe LDH/siRNA nanomedicine is able to efficiently suppress the growth of xenografts through cancer cell proliferation suppression, displaying its great potential as a simultaneous glucose/glutamine metabolism coinhibitor for treating pancreatic cancer.
    Keywords:  GLS1; Kras; glucose metabolism inhibition; glutamine metabolism inhibition; layered double hydroxide nanoparticles; pancreatic cancer; siRNA
    DOI:  https://doi.org/10.1021/acsami.2c00111
  5. Biomed Res Int. 2022 ;2022 2587120
       Background: The high heterogeneity and the complexity of the tumor microenvironment of colorectal cancer (CRC) have enhanced the difficulty of prognosis prediction based on conventional clinical indicators. Recent studies revealed that tumor cells could overcome various nutritional deficiencies by gene regulation and metabolic remodeling. However, whether differentially expressed genes (DEGs) in CRC cells under kinds of nutrient deficiency could be used to predict prognosis remained unveiled.
    Methods: Three datasets (GSE70976, GSE13548, and GSE116087), in which colon cancer cells were, respectively, cultured in serum-free, glucose-free, or glutamine-free medium, were included to delineate the profiles of gene expression by nutrient stress. DEGs were figured out in three datasets, and gene functional analysis was performed. Survival analyses and Cox proportional hazards model were then used to identify nutrient stress sensitive genes in CRC datasets (GSE39582 and TCGA COAD). Then, a 5-gene signature was constructed and the risk scores were also calculated. Survival analyses, cox analyses, and nomogram were applied to predict the prognosis of patients with colorectal cancer. The effectiveness of the risk model was also tested.
    Results: A total of 48 genes were found to be dysregulated in serum, glucose, or glutamine-deprived CRC cells, which were mainly enriched in cell cycle and endoplasmic reticulum stress pathways. After further analyses, 5 genes, MCM5, MCM6, CDCA2, GINS2, and SPC25, were identified to be differentially expressed in CRC and be related to prognosis of in CRC datasets. We used the above nutrient stress-sensitive genes to construct a risk scoring model. CRC samples in the datasets were divided into low-risk and high-risk groups. Data showed that higher risk scores were associated with better outcomes and risk scores decreased significantly with tumor procession. Moreover, the risk score could be used to predict the probability of survival based on nomogram.
    Conclusions: The 5-nutrient stress-sensitive gene signature could act as an independent biomarker for survival prediction of CRC patients.
    DOI:  https://doi.org/10.1155/2022/2587120
  6. Cancer Res. 2022 May 02. pii: canres.3868.2021. [Epub ahead of print]
      Branched-chain amino acid transaminase 1 (BCAT1) is upregulated selectively in human isocitrate dehydrogenase (IDH) wildtype (WT) but not mutant glioblastoma multiforme (GBM) and promotes IDHWT GBM growth. Through a metabolic synthetic lethal screen, we report here that α-ketoglutarate (AKG) kills IDHWT GBM cells when BCAT1 protein is lost, which is reversed by re-expression of BCAT1 or supplementation with branched-chain α-ketoacids (BCKAs), downstream metabolic products of BCAT1. In patient-derived IDHWT GBM tumors in vitro and in vivo, co-treatment of BCAT1 inhibitor gabapentin and AKG resulted in synthetic lethality. However, AKG failed to evoke a synthetic lethal effect with loss of BCAT2, BCKDHA, or GPT2 in IDHWT GBM cells. Mechanistically, loss of BCAT1 increased the NAD+/NADH ratio but impaired oxidative phosphorylation, mTORC1 activity, and nucleotide biosynthesis. These metabolic alterations were synergistically augmented by AKG treatment, thereby causing mitochondrial dysfunction and depletion of cellular building blocks, including ATP, nucleotides, and proteins. Partial restoration of ATP, nucleotides, proteins, and mTORC1 activity by BCKA supplementation prevented IDHWT GBM cell death conferred by the combination of BCAT1 loss and AKG. These findings define a targetable metabolic vulnerability in the most common subset of GBM that is currently incurable.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-3868
  7. Cancer Lett. 2022 Apr 28. pii: S0304-3835(22)00194-X. [Epub ahead of print]538 215710
      The inadequate in vivo persistence of chimeric antigen receptor (CAR)-modified T cells has been shown to lead to poor therapeutic efficacy and disease recurrence. In vivo persistence is associated with the differentiation subsets infused, with less differentiated TN or TCM conferring superior renewal capacity and antitumor immunity compared to TEM or TEFF. However, ex vivo expanded CAR-T cells exhibit phenotypic heterogeneity with majority of TEM or TEFF subsets and very low populations of TN and TCM. The transition of differentiation subsets is closely correlated with T cell metabolism fitness. Effector T cell differentiation from TN or TCM requires glutamine uptake and metabolism. Using a CD19-specific CAR, we demonstrated that glutamine inhibition by adding the glutamine antagonist 6-Diazo-5-oxo-l-norleucine (DON) into the culture endows CAR-T cells with enhanced mitochondrial OXPHOS utilizing fatty acids and reduced glycolytic activity, and retains more TN or TCM subsets. DON- pretreated CAR-T cells exhibited stronger cytotoxic lysis in vitro and more robust elimination of tumor burdens in vivo. This study suggests that glutamine inhibition ex vivo would be a potential approach for modulating metabolism and differentiation state to improve the efficacy of CAR-T cell therapy.
    Keywords:  Fatty acid oxidation; Glutamine antagonist; Glycolysis; Memory T cell; Mitochondrial OXPHOS
    DOI:  https://doi.org/10.1016/j.canlet.2022.215710
  8. STAR Protoc. 2022 Jun 17. 3(2): 101345
      Analyzing the metabolic dependencies of tumor cells is vital for cancer diagnosis and treatment. Here, we describe a protocol for 13C-stable glucose and glutamine isotope tracing in mice HER2+ breast cancer brain metastatic lesions. We describe how to inject cancer cells intracardially to generate brain metastatic lesions in mice. We then detail how to perform 13C-stable isotope infusion in mice with established brain metastasis. Finally, we outline steps for sample collection, processing for metabolite extraction, and analyzing mass spectrometry data. For complete details on the use and execution of this protocol, please refer to Parida et al. (2022).
    Keywords:  Cancer; Cell Biology; Cell culture; Mass Spectrometry; Metabolism; Metabolomics
    DOI:  https://doi.org/10.1016/j.xpro.2022.101345
  9. Int J Cancer. 2022 May 02.
      Memory CD8+ T cells mature after antigen clearance and ultimately express CD8 protein at levels higher than those detected in effector CD8+ T cells. However, it is not clear whether engagement of CD8 in the absence of antigenic stimulation will result in the functional activation of T cells. Here, we found that CD8 antibody-mediated activation of memory CD8+ T cells triggered T cell receptor (TCR) downstream signaling, enhanced T cell-mediated cytotoxicity, and promoted effector cytokine production in a glucose- and glutamine-dependent manner. Furthermore, pretreatment of memory CD8+ T cells with an agonistic anti-CD8 antibody enhanced their tumoricidal activity in vitro and in vivo. From these studies, we conclude that CD8 agonism activates glucose and glutamine metabolism in memory T cells and enhances the efficacy of memory T cell-based cancer immunotherapy.
    Keywords:  CD8+ T cells; TCR signaling; immunometabolism; immunotherapy; memory T cells
    DOI:  https://doi.org/10.1002/ijc.34059
  10. Cancer Lett. 2022 May 02. pii: S0304-3835(22)00197-5. [Epub ahead of print] 215713
      Malignant brain tumors and metastases pose significant health problems and cause substantial morbidity and mortality in children and adults. Based on epidemiological evidence, gliomas comprise 30% and 80% of primary brain tumors and malignant tumors, respectively. Brain metastases affect 15-30% of cancer patients, particularly primary tumors of the lung, breast, colon, and kidney, and melanoma. Despite advancements in multimodal molecular targeted therapy and immunotherapy that do not ensure long-term treatment, malignant brain tumors and metastases contribute significantly to cancer related mortality. Recent studies have shown that metastatic cancer cells possess distinct metabolic traits to adapt and survive in new environment that differs significantly from the primary site in both nutrient composition and availability. As metabolic regulation lies at the intersection of many research areas, concerted efforts to understand the metabolic mechanism(s) driving malignant brain tumors and metastases may reveal novel therapeutic targets to prevent or reduce metastasis and predict biomarkers for the treatment of this aggressive disease. This review focuses on various aspects of metabolic signaling, interface between metabolic regulators and cellular processes, and implications of their dysregulation in the context of brain tumors and metastases.
    Keywords:  Brain metastasis; Brain tumor; Cancer; Immune cell metabolism; Metabolic reprogramming
    DOI:  https://doi.org/10.1016/j.canlet.2022.215713