bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2024–04–21
eight papers selected by
Sreeparna Banerjee, Middle East Technical University



  1. Osteoarthritis Cartilage. 2024 Apr 12. pii: S1063-4584(24)01152-X. [Epub ahead of print]
       OBJECTIVE: Chondrocytes, which typically rely on anaerobic metabolism, exhibit upregulated biosynthetic activity when subjected to conditions that elicit mixed aerobic-anaerobic metabolism. Previously, we observed that increasing media volume resulted in the transition from anaerobic to mixed aerobic-anaerobic metabolism. Maximal extracellular matrix (ECM) accumulation occurred at this transition as a result of changes in HIF-1α signaling and associated hypoxic gene expression. This study aimed to explore the effect of further increases in media availability on ECM synthesis and chondrocyte metabolism.
    METHODS: Primary bovine chondrocytes were grown in 3D high-density tissue culture under varying levels of media availability (4 - 16 mL/106 cells). Changes in ECM accumulation and metabolism were determined through biochemical assays and 13C-metabolic flux analysis (13C-MFA).
    RESULTS: Increasing media volumes resulted in higher accumulation of cartilaginous extracellular matrix (collagen and proteoglycans) and cellularity. Extracellular metabolite measurements revealed that elevated media availability led to increased glucose and glutamine metabolism, along with increased anaerobic activity. 13C-MFA utilizing [U-13C] glucose demonstrated that increased media availability significantly impacted central carbon metabolism, upregulating all glucose-related metabolic pathways (glycolysis, lactate fermentation, the TCA cycle, hexosamine biosynthetic pathway, and the malate-aspartate shuttle). Furthermore, 13C-MFA indicated that glutamine was donating carbons to the TCA cycle, and additional studies involving [U-13C] glutamine tracing supported this notion.
    CONCLUSIONS: Elevated media availability upregulates extracellular matrix synthesis and leads to significant changes in metabolic phenotype. Glutamine plays an important role in chondrocyte metabolism and increases in glutamine metabolism correlate with increases in extracellular matrix accumulation.
    Keywords:  chondrocytes; isotope tracing; metabolic flux analysis; metabolism; tissue engineering
    DOI:  https://doi.org/10.1016/j.joca.2024.03.119
  2. J Biol Chem. 2024 Apr 17. pii: S0021-9258(24)01800-3. [Epub ahead of print] 107299
      ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.
    DOI:  https://doi.org/10.1016/j.jbc.2024.107299
  3. Hum Cell. 2024 Apr 16.
      Cancer-associated fibroblasts (CAFs) can promote the crosstalk between cancer cells and tumor microenvironment by exosomes. METTL3-mediated N6-methyladenine (m6A) modification has been proved to promote the progression of non-small cell lung cancer (NSCLC). Here, we focused on the impacts of CAFs-derived exosomes and METTL3-mediated m6A modification on NSCLC progression. Functional analyses were conducted using Cell Counting Kit-8, EdU, colony formation, sphere formation and transwell assays, respectively. Glutamine metabolism was evaluated by detecting glutamate consumption, and the production of intercellular glutamate and α-ketoglutarate (α-KG). qRT-PCR and western blotting analyses were utilized to measure the levels of genes and proteins. Exosomes were isolated by kits. The methylated RNA immunoprecipitation assay detected the m6A modification profile of Amino acid transporter LAT1 (SLC7A5) mRNA. The NSCLC mouse model was established to conduct in vivo experiments. We found that CAFs promoted the proliferation, invasion, stemness and glutaminolysis in NSCLC cells. METTL3 was enriched in CAFs and was packaged into exosomes. After knockdown of METTL3 in CAF exosomes, it was found the oncogenic effects of CAFs on NSCLC cells were suppressed. CAFs elevated m6A levels in NSCLC cells. Mechanistically, exosomal METTL3-induced m6A modification in SLC7A5 mRNA and stabilized its expression in NSCLC cells. Moreover, SLC7A5 overexpression abolished the inhibitory effects of exosomal METTL3-decreased CAFs on NSCLC cells. In addition, METTL3 inhibition in CAF exosomes impeded NSCLC growth in vivo. In all, CAFs-derived exosomal METTL3 promoted the proliferation, invasion, stemness and glutaminolysis in NSCLC cells by inducing SLC7A5 m6A modification.
    Keywords:  Exosomes; Glutamine metabolism; METTL3; SLC7A5; Stemness; m6A
    DOI:  https://doi.org/10.1007/s13577-024-01056-z
  4. Cold Spring Harb Perspect Med. 2024 Apr 15. pii: a041549. [Epub ahead of print]
      Diet and exercise are modifiable lifestyle factors known to have a major influence on metabolism. Clinical practice addresses diseases of altered metabolism such as diabetes or hypertension by altering these factors. Despite enormous public interest, there are limited defined diet and exercise regimens for cancer patients. Nevertheless, the molecular basis of cancer has converged over the past 15 years on an essential role for altered metabolism in cancer. However, our understanding of the molecular mechanisms that underlie the impact of diet and exercise on cancer metabolism is in its very early stages. In this work, we propose conceptual frameworks for understanding the consequences of diet and exercise on cancer cell metabolism and tumor biology and also highlight recent developments. By advancing our mechanistic understanding, we also discuss actionable ways that such interventions could eventually reach the mainstay of both medical oncology and cancer control and prevention.
    DOI:  https://doi.org/10.1101/cshperspect.a041549
  5. MedComm (2020). 2024 May;5(5): e525
      At present, there is limited research on the mechanisms underlying moyamoya disease (MMD). Herein, we aimed to determine the role of glutamine in MMD pathogenesis, and 360 adult patients were prospectively enrolled. Human brain microvascular endothelial cells (HBMECs) were subjected to Integrin Subunit Beta 4 (ITGB4) overexpression or knockdown and atorvastatin. We assessed factors associated with various signaling pathways in the context of the endothelial-to-mesenchymal transition (EndMT), and the expression level of related proteins was validated in the superficial temporal arteries of patients. We found glutamine levels were positively associated with a greater risk of stroke (OR = 1.599, p = 0.022). After treatment with glutamine, HBMECs exhibited enhanced proliferation, migration, and EndMT, all reversed by ITGB4 knockdown. In ITGB4-transfected HBMECs, the MAPK-ERK-TGF-β/BMP pathway was activated, with Smad4 knockdown reversing the EndMT. Furthermore, atorvastatin suppressed the EndMT by inhibiting Smad1/5 phosphorylation and promoting Smad4 ubiquitination in ITGB4-transfected HBMECs. We also found the protein level of ITGB4 was upregulated in the superficial temporal arteries of patients with MMD. In conclusion, our study suggests that glutamine may be an independent risk factor for hemorrhage or infarction in patients with MMD and targeting ITGB4 could potentially be therapeutic approaches for MMD.
    Keywords:  Integrin Subunit Beta 4; Smad; endothelial‐to‐mesenchymal transition; glutamine; moyamoya; stroke
    DOI:  https://doi.org/10.1002/mco2.525
  6. Curr Opin Cell Biol. 2024 Apr 15. pii: S0955-0674(24)00038-3. [Epub ahead of print]88 102359
      Macropinocytosis (MP), the actin-dependent bulk uptake of extracellular fluids, plays a central role in nutrient scavenging, allowing cancer cells to sustain their growth in the hypoxic and nutrient-deprived microenvironment often found in solid tumours. The lack of soluble nutrients and several oncogenic signalling pathways, with RAS being the most studied, push MP-dependent internalisation of extracellular proteins, which are then digested in the lysosomes, replenishing the intracellular nutrient pools. This review will highlight recent advances in understanding how MP is regulated in hypoxic cancers, how it impinges on chemoresistance, and how different MP cargos facilitate tumour growth. Finally, I will highlight the crosstalk between MP and extracellular matrix receptors.
    DOI:  https://doi.org/10.1016/j.ceb.2024.102359
  7. Cell Death Dis. 2024 Apr 15. 15(4): 267
      Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.
    DOI:  https://doi.org/10.1038/s41419-024-06625-6
  8. bioRxiv. 2024 Apr 04. pii: 2024.04.03.587917. [Epub ahead of print]
      How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive MYC transcription and Tsc1 loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with Tsc1 deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit. A low leucine diet was therapeutic even in late-stage disease but did not hinder T cell immunity to infectious challenge, nor impede T cell transformation driven by constitutive nutrient mTORC1 signaling via Depdc5 loss. Thus, mTORC1 signaling hypersensitivity to leucine as an onco-nutrient enables an onco-circuit, decoupling pathologic from physiologic utilization of nutrient acquisition pathways.
    DOI:  https://doi.org/10.1101/2024.04.03.587917