JCI Insight. 2021 Mar 16. pii: 137593. [Epub ahead of print]
Ni Yang,
Lauren Parker,
Jianshi Yu,
Jace W Jones,
Ting Liu,
Kyriakos N Papanicolaou,
C Conover Talbot,
Kenneth B Margulies,
Brian O'Rourke,
Maureen Kane,
D Brian Foster.
Though low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we show that proteomic analyses of human and guinea pig heart failure (HF) are consistent a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry reveals 32 and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2mg/kg/day) is sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Though cardiac ATRA declines in both guinea pig HF human IDCM, levels certain retinoid metabolic enzymes diverge. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, abrogates the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.
Keywords: Cardiology; Heart failure