Cardiovasc Res. 2024 Mar 01. pii: cvae045. [Epub ahead of print]
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis. Aortic stenosis is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. In a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, named cardiomyocyte hypertrophy, as their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of aortic stenosis consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiology and cellular and molecular mechanisms that sufficiently resemblance humans; in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries) and porcine (pig, Sus scrofa), have contributed to the research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming to the prevention of the disease progress or, alternatively, to the regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that better mimic the condition until the present moment.
Keywords: Angiogenesis; Aortic Stenosis; Cardiac Hypertrophy; Cardiac cell populations; Cardiac contractile activity; Cardiac homeostasis; Cardiac metabolism; Cardiac pathophysiology; Cardiomyocyte nucleation; Experimental surgical models; Fibrosis; Hypertrophic cardiomyocyte; Hypoxia; Immune infiltration; Inflammation; Large animal models; Left Ventricular Hypertrophy; Pressure Overload