bims-hummad Biomed News
on Humanised mouse models of autoimmune disorders
Issue of 2024–08–18
three papers selected by
Maksym V. Kopanitsa, Charles River Laboratories



  1. Front Immunol. 2024 ;15 1365946
       Introduction: Humanized mouse models to recapitulate human biological systems still have limitations, such as the onset of lethal graft-versus-host disease (GvHD), a variable success rate, and the low accessibility of total body irradiation (TBI). Recently, mice modified with the CD47-SIRPA axis have been studied to improve humanized mouse models. However, such trials have been rarely applied in NOD mice. In this study, we created a novel mouse strain, NOD-CD47nullRag2nullIL-2rγnull (RTKO) mice, and applied it to generate humanized mice.
    Methods: Four-week-old female NOD-Rag2nullIL-2rγnull (RID) and RTKO mice pre-conditioned with TBI or busulfan (BSF) injection were used for generating human CD34+ hematopoietic stem cell (HSC) engrafted humanized mice. Clinical signs were observed twice a week, and body weight was measured once a week. Flow cytometry for human leukocyte antigens was performed at intervals of four weeks or two weeks, and mice were sacrificed at 48 weeks after HSC injection.
    Results: For a long period from 16 to 40 weeks post transplantation, the percentage of hCD45 was mostly maintained above 25% in all groups, and it was sustained the longest and highest in the RTKO BSF group. Reconstruction of human leukocytes, including hCD3, was also most prominent in the RTKO BSF group. Only two mice died before 40 weeks post transplantation in all groups, and there were no life-threatening GvHD lesions except in the dead mice. The occurrence of GvHD has been identified as mainly due to human T cells infiltrating tissues and their related cytokines.
    Discussion: Humanized mouse models under all conditions applied in this study are considered suitable models for long-term experiments based on the improvement of human leukocytes reconstruction and the stable animal health. Especially, RTKO mice pretreated with BSF are expected to be a valuable platform not only for generating humanized mice but also for various immune research fields.
    Keywords:  busulfan; cd47; hematopoietic stem cells; humanized mice; signal-regulatory protein alpha; total body irradiation
    DOI:  https://doi.org/10.3389/fimmu.2024.1365946
  2. Int J Mol Sci. 2024 Jul 26. pii: 8169. [Epub ahead of print]25(15):
      Conventional rodent neuromyelitis optica spectrum disorder (NMOSD) models using patient-derived immunoglobulin G (IgG) are potentially affected by the differences between the human and rodent aquaporin-4 (AQP4) extracellular domains (ECDs). We hypothesized that the humanization of AQP4 ECDs would make the rodent model lesions closer to human NMOSD pathology. Humanized-AQP4-expressing (hAQP4) rats were generated using genome-editing technology, and the human AQP4-specific monoclonal antibody (mAb) or six patient-derived IgGs were introduced intraperitoneally into hAQP4 rats and wild-type Lewis (WT) rats after immunization with myelin basic protein and complete Freund's adjuvant. Human AQP4-specific mAb induced astrocyte loss lesions specifically in hAQP4 rats. The patient-derived IgGs also induced NMOSD-like tissue-destructive lesions with AQP4 loss, demyelination, axonal swelling, complement deposition, and marked neutrophil and macrophage/microglia infiltration in hAQP4 rats; however, the difference in AQP4 loss lesion size and infiltrating cells was not significant between hAQP4 and WT rats. The patient-derived IgGs bound to both human and rat AQP4 M23, suggesting their binding to the shared region of human and rat AQP4 ECDs. Anti-AQP4 titers positively correlated with AQP4 loss lesion size and neutrophil and macrophage/microglia infiltration. Considering that patient-derived IgGs vary in binding sites and affinities and some of them may not bind to rodent AQP4, our hAQP4 rat is expected to reproduce NMOSD-like pathology more accurately than WT rats.
    Keywords:  CRISPR/Cas9 genome editing; NMO-IgG; aquaporin-4; extracellular domain; humanized-AQP4-expressing rat model; neuromyelitis optica spectrum disorder
    DOI:  https://doi.org/10.3390/ijms25158169
  3. Vision Res. 2024 Aug 15. pii: S0042-6989(24)00108-1. [Epub ahead of print]223 108464
      Exfoliation syndrome is a leading cause of secondary glaucoma worldwide. Among the risk-factors for exfoliation syndrome and exfoliation glaucoma that have been investigated, a genetic association with 15q24.1 is among the most striking. The leading candidates for the causal gene at this locus are LOXL1 and/or LOXL1-AS1, but studies have not yet coalesced in establishing, or ruling out, either candidate. Here, we contribute to studies of the 15q24.1 locus by making a partially humanized mouse model in which 166 kb of human genomic DNA from the 15q24.1 locus was introduced into the mouse genome via BAC transgenesis (B6-Tg(RP11-71M11)Andm). Transgenic expression of human genes in the BAC was only detectable for LOXL1-AS1. One cohort of 34 mice (21 experimental hemizygotes and 13 non-carrier control littermates) was assessed by slit-lamp exams and SD-OCT imaging at early (1-2 months) and mid (4-5 months) time points; fundus exams were performed at 5 months of age. A second smaller cohort (3 hemizygotes) were aged extensively (>12 months) to screen for overt abnormalities. Across all genotypes and ages, 136 slit-lamp exams, 128 SD-OCT exams, and 42 fundus exams detected no overt indices of exfoliation syndrome. Quantitatively, small, but statistically significant, age-related declines in ganglion cell complex thickness and total retinal thickness were detected in the hemizygotes at 4 months of age. Overall, this study demonstrates complexity in gene regulation from the 15q24.1 locus and suggests that LOXL1-AS1 is unlikely to be a monogenic cause of exfoliation syndrome but may contribute to glaucomatous retinal damage.
    Keywords:  Animal Models; GWAS; Glaucoma genetics; LOXL1; LOXL1-AS
    DOI:  https://doi.org/10.1016/j.visres.2024.108464