bims-hypusi Biomed News
on Hypusine and eIF5A
Issue of 2022–12–25
two papers selected by
Sebastian J. Hofer, University of Graz



  1. Nat Commun. 2022 Dec 17. 13(1): 7796
      Control of mRNA translation adjusts protein production rapidly and facilitates local cellular responses to environmental conditions. Traditionally initiation of translation is considered to be a major translational control point, however, control of peptide elongation is also important. Here we show that the function of the elongation factor, eIF5a, is regulated dynamically in naïve CD8+ T cells upon activation by post-translational modification, whereupon it facilitates translation of specific subsets of proteins. eIF5a is essential for long-term survival of effector CD8+ T cells and sequencing of nascent polypeptides indicates that the production of proteins which regulate proliferation and key effector functions, particularly the production of IFNγ and less acutely TNF production and cytotoxicity, is dependent on the presence of functional eIF5a. Control of translation in multiple immune cell lineages is required to co-ordinate immune responses and these data illustrate that translational elongation contributes to post-transcriptional regulons important for the control of inflammation.
    DOI:  https://doi.org/10.1038/s41467-022-35252-y
  2. J Clin Lab Anal. 2022 Dec 22. e24820
       BACKGROUND: This study attempted to investigate the significance of eukaryotic initiation factor 5A2 (EIF5A2) in the prognosis and regulatory network of head and neck squamous cell carcinoma (HNSCC).
    METHODS: EIF5A2 expression, prognostic information, and methylation levels of HNSCC were collected from the Cancer Genome Atlas (TCGA) database. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot analyses were performed to determine EIF5A2 levels in HNSCC and normal tissue samples. R software was employed for expression analysis and prognosis assessment of EIF5A2 in HNSCC. A competing endogenous RNA (ceRNA) network was generated with the starBase database. Gene set enrichment analysis (GSEA) was used to determine the enriched physiological functions and network related to high expression of EIF5A2 in HNSCC. Immune infiltration-related outcomes were acquired from the CIBERSORT and Tumor Immune Estimation Resource (TIMER) database.
    RESULTS: EIF5A2 overexpression was observed in HNSCC and linked to poor progression-free survival and overall survival time. Cox regression analyses showed that EIF5A2 level was a stand-alone indicator of HNSCC patients' prognosis. A ceRNA network analysis highlighted the SNHG16/miR-10b-5p/EIF5A2 axis in EIF5A2 regulation. The GSEA results indicated that EIF5A2 was involved in complex signaling pathways. The CIBERSORT and TIMER databases revealed significant associations between EIF5A2 expression and immune cell infiltration.
    CONCLUSION: EIF5A2 overexpression may be a risk factor for prognosis in HNSCC and may be regulated by the SNHG16/miR-10b-5p/EIF5A2 axis.
    Keywords:  The Cancer Genome Atlas; competing endogenous RNA (ceRNA) network; eukaryotic initiation factor 5A2; head and neck squamous cell carcinoma; prognosis
    DOI:  https://doi.org/10.1002/jcla.24820