bims-hypusi Biomed News
on Hypusine and eIF5A
Issue of 2023‒11‒19
four papers selected by
Sebastian J. Hofer, University of Graz



  1. Nat Struct Mol Biol. 2023 Nov;30(11): 1816-1825
      A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. Start codon-associated ribosomal frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra that are unannotated in the human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational 'noise' in nutrient stress adaptation.
    DOI:  https://doi.org/10.1038/s41594-023-01119-z
  2. Int Immunopharmacol. 2023 Nov 15. pii: S1567-5769(23)01554-0. [Epub ahead of print]126 111227
      BACKGROUND: Despite EIF5A upregulation related to tumor progression in LUAD (lung adenocarcinoma), the underlying mechanisms remain elusive. In addition, there are few comprehensive analyses of EIF5A in LUAD.METHODS: We investigated the EIF5A expression level in LUAD patients using data from the TCGA and GEO databases. We employed qRT-PCR and western blot to verify EIF5A expression in cell lines, while immunohistochemistry was utilized for clinical sample analysis. We analyzed EIF5A expression in tumor-infiltrating immune cells using the TISCH database and assessed its association with immune infiltration in LUAD using the "ESTIMATE" R package. Bioinformatics approaches were developed to discover the EIF5A-related genes and explore EIF5A potential mechanisms in LUAD. Proliferation ability was verified through CCK-8, clone formation, and EdU assays, while flow cytometry assessed apoptosis and cell cycle. Western blot was used to detect the expression of pathway-related proteins.
    RESULTS: EIF5A was significantly upregulated in LUAD. Moreover, we constructed a MAZ-hsa-miR-424-3p-EIF5A transcriptional network. We explored the potential mechanism of EIF5A in LUAD and further investigated the cAMP signaling pathway and the cell cycle. Finally, we proved that EIF5A silencing induced G1/S Cell Cycle arrest, promoted apoptosis, and inhibited proliferation via the cAMP/PKA/CREB signaling pathway.
    CONCLUSION: EIF5A serves as a prognostic biomarker with a negative correlation to immune infiltrates in LUAD. It regulated the cell cycle in LUAD by inhibiting the cAMP/PKA/CREB signaling pathway.
    Keywords:  Bioinformatics analysis; Cell cycle; Eukaryotic translation initiation factor 5A; Lung adenocarcinoma; Proliferation; cAMP signaling pathway
    DOI:  https://doi.org/10.1016/j.intimp.2023.111227
  3. bioRxiv. 2023 Oct 23. pii: 2023.10.23.563604. [Epub ahead of print]
      Assembly of functional ribosomal subunits and successfully delivering them to the translating pool is a prerequisite for protein synthesis and cell growth. In S. cerevisiae, the ribosome assembly factor Reh1 binds to pre-60S subunits at a late stage during their cytoplasmic maturation. Previous work shows that the C-terminus of Reh1 inserts into the polypeptide exit tunnel (PET) of the pre-60S subunit. Unlike canonical assembly factors, which associate exclusively with pre-60S subunits, we observed that Reh1 sediments with polysomes in addition to free 60S subunits. We therefore investigated the intriguing possibility that Reh1 remains associated with 60S subunits after the release of the anti-association factor Tif6 and after subunit joining. Here, we show that Reh1-bound nascent 60S subunits associate with 40S subunits to form actively translating ribosomes. Using selective ribosome profiling, we found that Reh1-bound ribosomes populate open reading frames near start codons. Reh1-bound ribosomes are also strongly enriched for initiator tRNA, indicating they are associated with early elongation events. Using single particle cryo-electron microscopy to image cycloheximide-arrested Reh1-bound 80S ribosomes, we found that Reh1-bound 80S contain A site peptidyl tRNA, P site tRNA and eIF5A indicating that Reh1 does not dissociate from 60S until early stages of translation elongation. We propose that Reh1 is displaced by the elongating peptide chain. These results identify Reh1 as the last assembly factor released from the nascent 60S subunit during its pioneer round of translation.
    DOI:  https://doi.org/10.1101/2023.10.23.563604
  4. Asian J Androl. 2023 Nov 14.
      ABSTRACT: Tumor-derived exosomes have been shown to play a key role in organ-specific metastasis, and the androgen receptor regulates prostate cancer (PCa) progression. It is unclear whether the androgen receptor regulates the recruitment of prostate cancer cells to the bone microenvironment, even bone metastases, through exosomes. Here, we found that exosomes isolated from PCa cells after knocking down androgen receptor (AR) or enzalutamide treatment can facilitate the migration of prostate cancer cells to osteoblasts. In addition, AR silencing or treatment with the AR antagonist enzalutamide may increase the expression of circular RNA-deoxyhypusine synthase (circ-DHPS) in PCa cells, which can be transported to osteoblasts by exosomes. Circ-DHPS acts as a competitive endogenous RNA (ceRNA) against endogenous miR-214-3p to promote C-C chemokine ligand 5 (CCL5) levels in osteoblasts. Increasing the level of CCL5 in osteoblasts could recruit more PCa cells into the bone microenvironment. Thus, blocking the circ-DHPS/miR-214-3p/CCL5 signal may decrease exosome-mediated migration of prostate cancer cells to osteoblasts.
    DOI:  https://doi.org/10.4103/aja202351