bims-hypusi Biomed News
on Hypusine and eIF5A
Issue of 2026–01–25
two papers selected by
Sebastian J. Hofer, Max Delbrück Center



  1. Commun Chem. 2026 Jan 17.
      Deoxyhypusine synthase (DHS) catalyzes the rate-limiting step of hypusination, a unique post-translational modification of eukaryotic translation factor 5 A (eIF5A). While DHS activity plays a critical role in both normal cellular processes and disease development, the lack of specific molecular tools has hindered detailed studies of this enzyme and the hypusination pathway in general. Existing inhibitors, such as polyamine analogs, suffer from limited specificity and versatility. In this study, we utilized crystallographic fragment screening (CFS) to identify potential DHS inhibitors and explore novel applications of this approach. With an unprecedented hit rate of 39%, we identified fragment clusters binding at key sites, including the active site entrance, the tetramer interface, the regulatory ball-and-chain motif, and potentially allosteric regions on the enzyme's surface. Notably, we discovered a covalent modifier that targets the catalytic lysine residue in an oxidoreductase reaction-specific manner, as well as fragments that induce significant structural rearrangements of crucial regulatory elements. Our findings establish a framework for extending CFS beyond traditional inhibitor discovery, demonstrating its utility in probing protein dynamics, identifying novel binding pockets, and investigating regulatory mechanisms. These results offer new insights into DHS function, hypusination dynamics, and the broader methodological advancements that CFS contributes to structural biology and protein regulation research.
    DOI:  https://doi.org/10.1038/s42004-026-01897-9
  2. Nature. 2026 Jan 21.
      Tissue-resident macrophages (RTMs) form during embryogenesis, self-renew locally, and regulate tissue homeostasis by clearing dead cells and debris1-6. During tissue damage, however, bone-marrow-derived monocytes enter tissues and differentiate into RTMs, repairing the tissue and replenishing macrophages in the niche1. The universal cell-intrinsic mechanisms that control the monocyte-to-RTM transition and the maintenance of mature RTMs across tissues remain elusive3. Here we show that deoxyhypusine synthase (DHPS), an enzyme that mediates spermidine-dependent hypusine modification of translation factor eIF5A5,7, is required for RTM differentiation and maintenance. Mice with myeloid cell lack of DHPS (Dhps-ΔM mice) had a global defect in RTMs across tissues, resulting in persistent but ultimately futile monocyte influx. Transcriptional analyses of DHPS-deficient macrophages indicated a block in their ability to differentiate into mature RTMs, whereas proteomics revealed defects in cell adhesion and signalling pathways. Sequencing of ribosome-engaged transcripts identified a subset of mRNAs involved in cell adhesion and signalling that rely on DHPS for efficient translation. Imaging of DHPS-deficient macrophages in tissues showed differences in morphology and tissue interactions, which were correlated with their failed RTM differentiation. DHPS-deficient macrophages were also defective in critical homeostatic RTM functions including efferocytosis and tissue maintenance. Together, our results demonstrate a cell-intrinsic, tissue-agnostic pathway that drives differentiation of monocyte-derived macrophages into RTMs.
    DOI:  https://doi.org/10.1038/s41586-025-09972-2