bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2021‒10‒03
nine papers selected by
Dylan Ryan
University of Cambridge


  1. Front Cell Infect Microbiol. 2021 ;11 725043
      Host cell metabolism is essential for the viral replication cycle and, therefore, for productive infection. Energy (ATP) is required for the receptor-mediated attachment of viral particles to susceptible cells and for their entry into the cytoplasm. Host cells must synthesize an array of biomolecules and engage in intracellular trafficking processes to enable viruses to complete their replication cycle. The tricarboxylic acid (TCA) cycle has a key role in ATP production as well as in the synthesis of the biomolecules needed for viral replication. The final assembly and budding process of enveloped viruses, for instance, require lipids, and the TCA cycle provides the precursor (citrate) for fatty acid synthesis (FAS). Viral infections may induce host inflammation and TCA cycle metabolic intermediates participate in this process, notably citrate and succinate. On the other hand, viral infections may promote the synthesis of itaconate from TCA cis-aconitate. Itaconate harbors anti-inflammatory, anti-oxidant, and anti-microbial properties. Fumarate is another TCA cycle intermediate with immunoregulatory properties, and its derivatives such as dimethyl fumarate (DMF) are therapeutic candidates for the contention of virus-induced hyper-inflammation and oxidative stress. The TCA cycle is at the core of viral infection and replication as well as viral pathogenesis and anti-viral immunity. This review highlights the role of the TCA cycle in viral infections and explores recent advances in the fast-moving field of virometabolism.
    Keywords:  host cell metabolism; metabolic reprogramming; mitochondria; tricarboxylic acid cycle; viruses
    DOI:  https://doi.org/10.3389/fcimb.2021.725043
  2. J Leukoc Biol. 2021 Sep 29.
      Monocyte migration to the sites of inflammation and maturation into macrophages are key steps for their immune effector function. Here, we show that mechanistic target of rapamycin complex 2 (mTORC2)-dependent Akt activation is instrumental for metabolic reprogramming at the early stages of macrophage-mediated immunity. Despite an increased production of proinflammatory mediators, monocytes lacking expression of the mTORC2 component Rictor fail to efficiently migrate to inflammatory sites and fully mature into macrophages, resulting in reduced inflammatory responses in vivo. The mTORC2-dependent phosphorylation of Akt is instrumental for the enhancement of glycolysis and mitochondrial respiration, required to sustain monocyte maturation and motility. These observations are discussed in the context of therapeutic strategies aimed at selective inhibition of mTORC2 activity.
    Keywords:  cell metabolism; mTORC2; macrophage; metabolism; monocyte
    DOI:  https://doi.org/10.1002/JLB.1A0920-588R
  3. Nat Metab. 2021 Sep 27.
      Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 is a virus-induced inflammatory disease of the airways and lungs that leads to severe multi-organ damage and death. Here we show that cellular lipid synthesis is required for SARS-CoV-2 replication and offers an opportunity for pharmacological intervention. Screening a short-hairpin RNA sublibrary that targets metabolic genes, we identified genes that either inhibit or promote SARS-CoV-2 viral infection, including two key candidate genes, ACACA and FASN, which operate in the same lipid synthesis pathway. We further screened and identified several potent inhibitors of fatty acid synthase (encoded by FASN), including the US Food and Drug Administration-approved anti-obesity drug orlistat, and found that it inhibits in vitro replication of SARS-CoV-2 variants, including more contagious new variants, such as Delta. In a mouse model of SARS-CoV-2 infection (K18-hACE2 transgenic mice), injections of orlistat resulted in lower SARS-CoV-2 viral levels in the lung, reduced lung pathology and increased mouse survival. Our findings identify fatty acid synthase inhibitors as drug candidates for the prevention and treatment of COVID-19 by inhibiting SARS-CoV-2 replication. Clinical trials are needed to evaluate the efficacy of repurposing fatty acid synthase inhibitors for severe COVID-19 in humans.
    DOI:  https://doi.org/10.1038/s42255-021-00479-4
  4. J Clin Invest. 2021 Sep 30. pii: e129679. [Epub ahead of print]
      Epoxyeicosatrienoic acids (EETs) have potent anti-inflammatory properties. Hydrolysis of EETs by soluble epoxide hydrolase (sEH/EPHX2) to less active diols attenuates their anti-inflammatory effects. Macrophage activation is critical to many inflammatory responses; however, the role of EETs and sEH in regulating macrophage function remains unknown. Lung bacterial clearance of S. pneumoniae was impaired in Ephx2-deficient (Ephx2-/-) mice and in mice treated with an sEH inhibitor. The EET receptor antagonist, EEZE, restored lung clearance of S. pneumoniae in Ephx2-/- mice. Ephx2-/- mice had normal lung Il-1β, Il-6 and Tnfα expression and macrophage recruitment to lungs during S. pneumoniae infection; however, Ephx2 disruption attenuated proinflammatory cytokine induction, Tlr2 and Pgylrp1 receptor upregulation and Rac1/2 and Cdc42 activation in PGN-stimulated macrophages. Consistent with these observations, Ephx2-/-macrophages displayed reduced phagocytosis of S. pneumoniae in vivo and in vitro. Heterologous overexpression of TLR2 and PGLYRP1 in Ephx2-/- macrophages restored macrophage activation and phagocytosis. Human macrophage function was similarly regulated by EETs. Together, these results demonstrate that EETs reduce macrophage activation and phagocytosis of S. pneumoniae through down-regulation of TLR2 and PGLYRP1 expression. Defining the role of EETs and sEH in macrophage function may lead to development of new therapeutic approaches for bacterial diseases.
    Keywords:  Bacterial infections; Cell Biology; Eicosanoids; Infectious disease; Macrophages
    DOI:  https://doi.org/10.1172/JCI129679
  5. Front Immunol. 2021 ;12 717014
      Immunity and metabolism are interdependent and coordinated, which are the core mechanisms for the body to maintain homeostasis. In tumor immunology research, immunometabolism has been a research hotspot and has achieved groundbreaking changes in recent years. However, in the field of maternal-fetal medicine, research on immunometabolism is still lagging. Reports directly investigating the roles of immunometabolism in the endometrial microenvironment and regulation of maternal-fetal immune tolerance are relatively few. This review highlights the leading techniques used to study immunometabolism and their development, the immune cells at the maternal-fetal interface and their metabolic features required for the implementation of their functions, explores the interaction between immunometabolism and pregnancy regulation based on little evidence and clues, and attempts to propose some new research directions and perspectives.
    Keywords:  T cells; cell metabolism analysis; macrophages; maternal-fetal tolerance; metabolomics; natural killer cells; reproductive immunology
    DOI:  https://doi.org/10.3389/fimmu.2021.717014
  6. Annu Rev Virol. 2021 Sep 29. 8(1): 373-391
      Over the past decades, there have been tremendous efforts to understand the cross-talk between viruses and host metabolism. Several studies have elucidated the mechanisms through which viral infections manipulate metabolic pathways including glucose, fatty acid, protein, and nucleotide metabolism. These pathways are evolutionarily conserved across the tree of life and extremely important for the host's nutrient utilization and energy production. In this review, we focus on host glucose, glutamine, and fatty acid metabolism and highlight the pathways manipulated by the different classes of viruses to increase their replication. We also explore a new system of viral hormones in which viruses mimic host hormones to manipulate the host endocrine system. We discuss viral insulin/IGF-1-like peptides and their potential effects on host metabolism. Together, these pathogenesis mechanisms targeting cellular signaling pathways create a multidimensional network of interactions between host and viral proteins. Defining and better understanding these mechanisms will help us to develop new therapeutic tools to prevent and treat viral infections.
    Keywords:  glutaminolysis; glycolysis; lipid metabolism; metabolism; viral insulins; viruses
    DOI:  https://doi.org/10.1146/annurev-virology-091919-102416
  7. Life Sci Alliance. 2021 Dec;pii: e202101013. [Epub ahead of print]4(12):
      Human CD4+ T cells are essential mediators of immune responses. By altering the mitochondrial and metabolic states, we defined metabolic requirements of human CD4+ T cells for in vitro activation, expansion, and effector function. T-cell activation and proliferation were reduced by inhibiting oxidative phosphorylation, whereas early cytokine production was maintained by either OXPHOS or glycolytic activity. Glucose deprivation in the presence of mild mitochondrial stress markedly reduced all three T-cell functions, contrasting the exposure to resveratrol, an antioxidant and sirtuin-1 activator, which specifically inhibited cytokine production and T-cell proliferation, but not T-cell activation. Conditions that inhibited T-cell activation were associated with the down-regulation of 2',5'-oligoadenylate synthetase genes via interferon response pathways. Our findings indicate that T-cell function is grossly impaired by stressors combined with nutrient deprivation, suggesting that correcting nutrient availability, metabolic stress, and/or the function of T cells in these conditions will improve the efficacy of T-cell-based therapies.
    DOI:  https://doi.org/10.26508/lsa.202101013
  8. Nat Commun. 2021 Sep 30. 12(1): 5736
      Despite the emerging importance of reactive electrophilic drugs, deconvolution of their principal targets remains difficult. The lack of genetic tractability/interventions and reliance on secondary validation using other non-specific compounds frequently complicate the earmarking of individual binders as functionally- or phenotypically-sufficient pathway regulators. Using a redox-targeting approach to interrogate how on-target binding of pleiotropic electrophiles translates to a phenotypic output in vivo, we here systematically track the molecular components attributable to innate immune cell toxicity of the electrophilic-drug dimethyl fumarate (Tecfidera®). In a process largely independent of canonical Keap1/Nrf2-signaling, Keap1-specific modification triggers mitochondrial-targeted neutrophil/macrophage apoptosis. On-target Keap1-ligand-engagement is accompanied by dissociation of Wdr1 from Keap1 and subsequent coordination with cofilin, intercepting Bax. This phagocytic-specific cell-killing program is recapitulated by whole-animal administration of dimethyl fumarate, where individual depletions of the players identified above robustly suppress apoptosis.
    DOI:  https://doi.org/10.1038/s41467-021-25466-x