Immunology. 2022 Feb 09.
The NLRP3 inflammasome is a multi-protein complex that regulates caspase-1 activation and subsequent interleukin (IL)-1β and IL-18 release from innate immune cells in response to infection or injury. Derivatives of the metabolites itaconate and fumarate, dimethyl itaconate (DMI), 4-octyl itaconate (4OI) and dimethyl fumarate (DMF), limit both expression and release of IL-1β following NLRP3 inflammasome activation. However, the direct effects of these metabolite derivatives on NLRP3 inflammasome responses require further investigation. Using murine bone marrow-derived macrophages, mixed glia and organotypic hippocampal slice cultures (OHSCs), we demonstrate that DMI, 4OI and DMF pre-treatment inhibit pro-inflammatory cytokine production in response to lipopolysaccharide (LPS), as well as inhibiting subsequent NLRP3 inflammasome activation induced by nigericin. DMI, 4OI, DMF and monomethyl fumarate (MMF), another fumarate derivative, also directly inhibited biochemical markers of NLRP3 activation in LPS-primed macrophages, mixed glia, OHSCs and human macrophages in response to nigericin and imiquimod, including ASC speck formation, caspase-1 activation, gasdermin D cleavage and IL-1β release. DMF, an approved treatment for multiple sclerosis, as well as DMI, 4OI and MMF, inhibited NLRP3 activation in macrophages in response to lysophosphatidylcholine, which is used to induce demyelination, suggesting a possible mechanism for DMF in multiple sclerosis through NLRP3 inhibition. The derivatives also reduced pro-IL-1α cleavage in response to the calcium ionophore ionomycin. Together, these findings reveal the immunometabolic regulation of both the priming and activation steps of NLRP3 activation in macrophages. Furthermore, we highlight itaconate and fumarate derivatives as potential therapeutic options in NLRP3- and IL-1α-driven diseases, including in the brain.
Keywords: NLRP3; fumarate; inflammasome; interleukin; itaconate