bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2023‒03‒05
thirty-two papers selected by
Dylan Ryan
University of Cambridge


  1. Cell Rep. 2023 Feb 26. pii: S2211-1247(23)00164-X. [Epub ahead of print]42(3): 112153
      Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.
    Keywords:  CP: Immunology; CP: Metabolism; IL-17; T cells; Th17 cells; acetyl-CoA; citrate; epigenetics; experimental autoimmune encephalomyelitis; glucose metabolism; histone acetylation; pyruvate dehydrogenase
    DOI:  https://doi.org/10.1016/j.celrep.2023.112153
  2. Cell Rep. 2023 Feb 28. pii: S2211-1247(23)00156-0. [Epub ahead of print]42(3): 112145
      The Krebs cycle-derived metabolite itaconate, whose production is catalyzed by immune response gene 1 (IRG1), has potential to link immunity and metabolism in activated macrophages through alkylation or competitive inhibition of target proteins. In support of this, our previous study demonstrated that the stimulator of interferon genes (STING) signaling platform functions as a hub in macrophage immunity and has a profound impact on the prognosis of sepsis. Interestingly, we find that itaconate, an endogenous immunomodulator, can significantly inhibit the activation of STING signaling. Moreover, 4-octyl itaconate (4-OI), which is a permeable itaconate derivative, can alkylate cysteine sites 65, 71, 88, and 147 of STING, thereby inhibiting its phosphorylation. Furthermore, itaconate and 4-OI inhibit the production of inflammatory factors in sepsis models. Our results broaden the knowledge on the role of the IRG1-itaconate axis in immunomodulation and highlight itaconate and its derivatives as potential therapeutic agents in sepsis.
    Keywords:  4-OI; CLP; CP: Immunology; IRG1; Itaconate; STING; inflammation; metabolite
    DOI:  https://doi.org/10.1016/j.celrep.2023.112145
  3. Nat Commun. 2023 Feb 27. 14(1): 984
      Dysregulation of Th17 and Treg cells contributes to the pathophysiology of many autoimmune diseases. Herein, we show that itaconate, an immunomodulatory metabolite, inhibits Th17 cell differentiation and promotes Treg cell differentiation by orchestrating metabolic and epigenetic reprogramming. Mechanistically, itaconate suppresses glycolysis and oxidative phosphorylation in Th17- and Treg-polarizing T cells. Following treatment with itaconate, the S-adenosyl-L-methionine/S-adenosylhomocysteine ratio and 2-hydroxyglutarate levels are decreased by inhibiting the synthetic enzyme activities in Th17 and Treg cells, respectively. Consequently, these metabolic changes are associated with altered chromatin accessibility of essential transcription factors and key gene expression in Th17 and Treg cell differentiation, including decreased RORγt binding at the Il17a promoter. The adoptive transfer of itaconate-treated Th17-polarizing T cells ameliorates experimental autoimmune encephalomyelitis. These results indicate that itaconate is a crucial metabolic regulator for Th17/Treg cell balance and could be a potential therapeutic agent for autoimmune diseases.
    DOI:  https://doi.org/10.1038/s41467-023-36594-x
  4. Int Rev Cell Mol Biol. 2023 ;pii: S1937-6448(22)00138-1. [Epub ahead of print]374 159-200
      Mitochondria are dynamic organelles of eukaryotes involved in energy production and fatty acid oxidation. Besides maintaining ATP production, calcium signaling, cellular apoptosis, and fatty acid synthesis, mitochondria are also known as the central hub of the immune system as it regulates the innate immune pathway during infection. Mitochondria mediated immune functions mainly involve regulation of reactive oxygen species production, inflammasome activation, cytokine secretion, and apoptosis of infected cells. Recent findings indicate that cellular mitochondria undergo constant biogenesis, fission, fusion and degradation, and these dynamics regulate cellular immuno-metabolism. Several intracellular pathogens target and modulate these normal functions of mitochondria to facilitate their own survival and growth. De-regulation of mitochondrial functions and dynamics favors bacterial infection and pathogens are able to protect themselves from mitochondria mediated immune responses. Here, we will discuss how mitochondria mediated anti-bacterial immune pathways help the host to evade pathogenic insult. In addition, examples of bacterial pathogens modulating mitochondrial metabolism and dynamics will also be elaborated. Study of these interactions between the mitochondria and bacterial pathogens during infection will lead to a better understanding of the mitochondrial metabolism pathways and dynamics important for the establishment of bacterial diseases. In conclusion, detailed studies on how mitochondria regulate the immune response during bacterial infection can open up new avenues to develop mitochondria centric anti-bacterial therapeutics.
    Keywords:  Apoptosis; Bacteria; Immune response; Mitochondria; Mitochondrial dynamics
    DOI:  https://doi.org/10.1016/bs.ircmb.2022.10.004
  5. EMBO Rep. 2023 Mar 02. e56932
      Obesity is associated with metabolic disorders and chronic inflammation. However, the obesity-associated metabolic contribution to inflammatory induction remains elusive. Here, we show that, compared with lean mice, CD4+ T cells from obese mice exhibit elevated basal levels of fatty acid β-oxidation (FAO), which promote T cell glycolysis and thus hyperactivation, leading to enhanced induction of inflammation. Mechanistically, the FAO rate-limiting enzyme carnitine palmitoyltransferase 1a (Cpt1a) stabilizes the mitochondrial E3 ubiquitin ligase Goliath, which mediates deubiquitination of calcineurin and thus enhances activation of NF-AT signaling, thereby promoting glycolysis and hyperactivation of CD4+ T cells in obesity. We also report the specific GOLIATH inhibitor DC-Gonib32, which blocks this FAO-glycolysis metabolic axis in CD4+ T cells of obese mice and reduces the induction of inflammation. Overall, these findings establish a role of a Goliath-bridged FAO-glycolysis axis in mediating CD4+ T cell hyperactivation and thus inflammation in obese mice.
    Keywords:  FAO; Goliath; glycolysis; inflammation; obesity
    DOI:  https://doi.org/10.15252/embr.202356932
  6. Cell Rep. 2023 Feb 28. pii: S2211-1247(23)00216-4. [Epub ahead of print]42(3): 112205
      Aerobic glycolysis, a metabolic pathway essential for effector T cell survival and proliferation, regulates differentiation of autoimmune T helper (Th) 17 cells, but the mechanism underlying this regulation is largely unknown. Here, we identify a glycolytic intermediate metabolite, phosphoenolpyruvate (PEP), as a negative regulator of Th17 differentiation. PEP supplementation or inhibition of downstream glycolytic enzymes in differentiating Th17 cells increases intracellular PEP levels and inhibits interleukin (IL)-17A expression. PEP supplementation inhibits expression of signature molecules for Th17 and Th2 cells but does not significantly affect glycolysis, cell proliferation, or survival of T helper cells. Mechanistically, PEP binds to JunB and inhibits DNA binding of the JunB/basic leucine zipper transcription factor ATF-like (BATF)/interferon regulatory factor 4 (IRF4) complex, thereby modulating the Th17 transcriptional program. Furthermore, daily administration of PEP to mice inhibits generation of Th17 cells and ameliorates Th17-dependent autoimmune encephalomyelitis. These data demonstrate that PEP links aerobic glycolysis to the Th17 transcriptional program, suggesting the therapeutic potential of PEP for autoimmune diseases.
    Keywords:  AP-1; CP: Immunology; Th17; autoimmune disease; cellular metabolism; glycolysis; phosphoenolpyruvate; transcriptional program
    DOI:  https://doi.org/10.1016/j.celrep.2023.112205
  7. Cell Rep. 2023 Mar 03. pii: S2211-1247(23)00197-3. [Epub ahead of print]42(3): 112186
      Branched-chain amino acids (BCAAs) provide nutrient signals for cell survival and growth. How BCAAs affect CD8+ T cell functions remains unexplored. Herein, we report that accumulation of BCAAs in CD8+ T cells due to the impairment of BCAA degradation in 2C-type serine/threonine protein phosphatase (PP2Cm)-deficient mice leads to hyper-activity of CD8+ T cells and enhanced anti-tumor immunity. CD8+ T cells from PP2Cm-/- mice upregulate glucose transporter Glut1 expression in a FoxO1-dependent manner with more glucose uptake, as well as increased glycolysis and oxidative phosphorylation. Moreover, BCAA supplementation recapitulates CD8+ T cell hyper-functions and synergizes with anti-PD-1, in line with a better prognosis in NSCLC patients containing high BCAAs when receiving anti-PD-1 therapy. Our finding thus reveals that accumulation of BCAAs promotes effector function and anti-tumor immunity of CD8+ T cells through reprogramming glucose metabolism, making BCAAs alternative supplementary components to increase the clinical efficacy of anti-PD-1 immunotherapy against tumors.
    Keywords:  CD8(+) T cells; CP: Immunology; anti-tumor immunity; branched-chain amino acid accumulation; effector function; glucose metabolism; synergy with anti-PD-1 treatment
    DOI:  https://doi.org/10.1016/j.celrep.2023.112186
  8. J Leukoc Biol. 2023 Feb 27. pii: qiad018. [Epub ahead of print]
      Natural killer (NK) cells quickly mount cytotoxic responses, produce cytokines, and proliferate in response to infected or transformed cells. Moreover, they can develop memory, with enhanced effector responses following activation, in some cases with antigen-specificity. To optimally execute these functions, NK cells undergo metabolic reprogramming. Here, we discuss the interplay between metabolism and NK cell function in the context of viral infections. We review findings supporting metabolic regulation of NK cell effector functions, with a focus on NK cell antiviral infection in the context of cytomegalovirus in the mouse (MCMV) and human (HCMV).
    Keywords:  cytokines; cytomegalovirus infection; cytotoxicity; interferon gamma; memory; metabolism; natural killer cells; proliferation
    DOI:  https://doi.org/10.1093/jleuko/qiad018
  9. bioRxiv. 2023 Feb 23. pii: 2023.02.23.529704. [Epub ahead of print]
      As one of the most successful human pathogens, Mycobacterium tuberculosis ( Mtb ) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a novel glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomics analysis of lungs from JHU083-treated Mtb -infected mice revealed reduced glutamine levels, citrulline accumulation suggesting elevated NOS activity, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. When tested in an immunocompromised mouse model of Mtb infection, JHU083 lost its therapeutic efficacy suggesting the drug’s host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.
    DOI:  https://doi.org/10.1101/2023.02.23.529704
  10. Cell Mol Immunol. 2023 Mar 01.
      Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
    Keywords:  Diabetes mellitus; Immune tolerance; Lupus; Multiple sclerosis; Rheumatoid arthritis; Short-chain fatty acids
    DOI:  https://doi.org/10.1038/s41423-023-00987-1
  11. Cell Rep. 2023 Jan 31. pii: S2211-1247(23)00046-3. [Epub ahead of print]42(1): 112035
      Invariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.
    Keywords:  AMPK; CP: Immunology; CP: Metabolism; PKM2; adipose tissue; iNKT cells; immunometabolism; liver injury; metabolism; obesity
    DOI:  https://doi.org/10.1016/j.celrep.2023.112035
  12. Int J Biol Macromol. 2023 Mar 01. pii: S0141-8130(23)00704-3. [Epub ahead of print] 123810
      Tumor cell-derived lactate has been recognized as the key driver of polarization in tumor-associated macrophages (TAMs). Intratumoral lactate can be transported into macrophages to fuel the TCA cycle, which is mediated by mitochondrial pyruvate carrier (MPC). At the heart of intracellular metabolism, MPC-mediated transport has been investigated in studies which suggested its role and importance in the process of TAMs polarization. However, previous studies relied on pharmacological inhibition instead of genetic approaches to evaluate the role of MPC in TAMs polarization. Here, we demonstrated that genetic depletion of MPC blocks the entry of lactate into mitochondria in macrophages. However, MPC-mediated metabolism was dispensable for IL-4/lactate-induced macrophages polarization as well as tumor growth. In addition, MPC depletion had no impact on hypoxia-inducible factor 1α (HIF-1α) stabilization and histone lactylation, both of which are required for TAMs polarization. Our study suggests that lactate itself, rather than its downstream metabolites, is responsible for TAMs polarization.
    Keywords:  Lactate; Metabolism; Mitochondrial pyruvate carrier; Tumor-associated macrophages
    DOI:  https://doi.org/10.1016/j.ijbiomac.2023.123810
  13. STAR Protoc. 2023 Jan 24. pii: S2666-1667(23)00020-5. [Epub ahead of print]4(1): 102062
      Mycobacterium tuberculosis (Mtb) hijacks host-derived fatty acids (FAs) to sustain its intracellular growth inside host cells. Here, we present a click-chemistry-based protocol to assess FA import by Mtb in axenic culture or inside mouse macrophages. We describe the use of alkyne analogs of natural FAs as an alternative to structurally altered fluorescent derivatives or hazardous radiolabeled FAs. We also detail quantitative analyses of FA uptake at single bacterial or host cell level by flow cytometry and confocal fluorescence microscopy. For complete details on the use and execution of this protocol, please refer to Laval et al. (2021).1.
    Keywords:  Cell Biology; Cell Culture; Flow Cytometry/Mass Cytometry; Immunology; Metabolism; Microbiology; Microscopy; Molecular/Chemical Probes
    DOI:  https://doi.org/10.1016/j.xpro.2023.102062
  14. Cancer Res. 2023 Feb 27. pii: CAN-22-3551. [Epub ahead of print]
      Alpha-fetoprotein (AFP) is expressed by stem-like and poor outcome hepatocellular cancer tumors and is a clinical tumor biomarker. AFP has been demonstrated to inhibit dendritic cell differentiation and maturation and to block oxidative phosphorylation. To identify the critical metabolic pathways leading to human dendritic cell functional suppression, here we utilized two recently described single cell profiling methods, scMEP (single-cell metabolic profiling) and SCENITH (single-cell energetic metabolism by profiling translation inhibition). Glycolytic capacity and glucose dependence of dendritic cells was significantly increased by tumor-derived, but not normal cord blood-derived, AFP, leading to increased glucose uptake and lactate secretion. Key molecules in the electron transport chain in particular were regulated by tumor-derived AFP. These metabolic changes occurred at mRNA and protein levels, with negative impact on dendritic cell stimulatory capacity. Tumor-derived AFP bound significantly more polyunsaturated fatty acids than cord blood-derived AFP. Polyunsaturated fatty acids bound to AFP increased metabolic skewing and promoted dendritic cell functional suppression. Polyunsaturated fatty acids inhibited dendritic cell differentiation in vitro, and ω-6 polyunsaturated fatty acids conferred potent immunoregulation when bound to tumor-derived AFP. Together, these findings provide mechanistic insights into how AFP antagonizes the innate immune response to limit anti-tumor immunity.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-3551
  15. Mitochondrion. 2023 Feb 28. pii: S1567-7249(23)00016-8. [Epub ahead of print]
      Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
    Keywords:  Aerobic glycolysis; Aging; Cancer; Diabetes; Embryogenesis; Inflammation; Neurodegeneration; Oxidative phosphorylation; Pyruvate dehydrogenase complex; Sepsis
    DOI:  https://doi.org/10.1016/j.mito.2023.02.007
  16. Eur J Pharmacol. 2023 Feb 24. pii: S0014-2999(23)00129-2. [Epub ahead of print]945 175618
      Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome. Non-resolving inflammation, triggered by sustained accumulation of lipids, is an important driving force of NASH. Thus, unveiling metabolic immune regulation could help better understand the pathology and intervention of NASH. In this study, we found the recruitment of neutrophils is an early inflammatory event in NASH mice, following the formation of neutrophil extracellular traps (NETs). NET is an initiating factor which exacerbates inflammatory responses in macrophages. Inhibition of NETs using DNase I significantly alleviated inflammation in NASH mice. We further carried out a metabolomic study to identify possible metabolic triggers of NETs, and linoleic acid (LA) metabolic pathway was the most altered pathway. We re-analyzed published clinical data and validated that LA metabolism was highly correlated with NASH. Consistently, both LA and γ-linolenic acid (GLA) were active in triggering NETs formation by oxidative burst. Furthermore, we identified silybin, a hepatoprotective agent, as a potent NETosis inhibitor, which effectively blocked NETs formation both in vitro and in vivo. Together, this study not only provide new insights into metabolism-immune causal link in NASH progression, but also demonstrate silybin as an important inhibitor of NETs and its therapeutical potential in treating NETosis-related diseases.
    Keywords:  Inflammation; Linoleic acid; Neutrophil extracellular traps; Nonalcoholic steatohepatitis; Silybin; γ-linolenic acid
    DOI:  https://doi.org/10.1016/j.ejphar.2023.175618
  17. Cardiovasc Res. 2023 Feb 27. pii: cvad035. [Epub ahead of print]
      Nutrition affects all physiological processes occurring in our body, including those related to the function of the immune system; indeed, metabolism has been closely associated with the differentiation and activity of both innate and adaptive immune cells. While excessive energy intake and adiposity have been demonstrated to cause systemic inflammation, several clinical and experimental evidence show that calorie restriction (CR), not leading to malnutrition, is able to delay aging and exert potent anti-inflammatory effects in different pathological conditions. This review provides an overview of the ability of different CR-related nutritional strategies to control autoimmune, cardiovascular and infectious diseases, as tested by preclinical studies and human clinical trials, with a specific focus on the immunological aspects of these interventions. In particular, we recapitulate the state of the art on the cellular and molecular mechanisms pertaining to immune cell metabolic rewiring, regulatory T cell expansion and gut microbiota composition, which possibly underline the beneficial effects of CR. Although studies are still needed to fully evaluate the feasibility and efficacy of the nutritional intervention in clinical practice, the experimental observations discussed here suggest a relevant role of CR in lowering the inflammatory state in a plethora of different pathologies, thus representing a promising therapeutic strategy for the control of human health.
    Keywords:  autoimmunity; caloric restriction; immunometabolism; regulatory T cells
    DOI:  https://doi.org/10.1093/cvr/cvad035
  18. Viruses. 2023 Feb 13. pii: 525. [Epub ahead of print]15(2):
      RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
    Keywords:  RNA viruses; host-directed therapies; immune responses; immunometabolism; inflammation; respiratory viruses
    DOI:  https://doi.org/10.3390/v15020525
  19. bioRxiv. 2023 Feb 21. pii: 2023.02.21.529402. [Epub ahead of print]
      Gasdermin D (GSDMD)-mediated macrophage pyroptosis plays a critical role in inflammation and host defense. Plasma membrane perforation elicited by caspase-cleaved GSDMD N-terminal domain (GSDMD-NT) triggers membrane rupture and subsequent pyroptotic cell death, resulting in release of pro-inflammatory IL-1β and IL-18. However, the biological processes leading to its membrane translocation and pore formation are not fully understood. Here, using a proteomics approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner and demonstrated that post-translational palmitoylation of GSDMD at Cys191/Cys192 (human/mouse) led to membrane translocation of GSDMD-NT but not full-length GSDMD. GSDMD lipidation, mediated by palmitoyl acyltransferases ZDHHC5/9 and facilitated by LPS-induced reactive oxygen species (ROS), was essential for GSDMD pore-forming activity and pyroptosis. Inhibition of GSDMD palmitoylation with palmitate analog 2-bromopalmitate or a cell permeable GSDMD-specific competing peptide suppressed pyroptosis and IL-1β release in macrophages, mitigated organ damage, and extended the survival of septic mice. Collectively, we establish GSDMD-NT palmitoylation as a key regulatory mechanism controlling GSDMD membrane localization and activation, providing a novel target for modulating immune activity in infectious and inflammatory diseases.One Sentence Summary: LPS-induced palmitoylation at Cys191/Cys192 is required for GSDMD membrane translocation and its pore-forming activity in macrophages.
    DOI:  https://doi.org/10.1101/2023.02.21.529402
  20. EMBO J. 2023 Feb 27. e111148
      Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.
    Keywords:  Zeb1; bone resorption; mitochondrial creatine kinase; osteoclast; skeletal remodeling
    DOI:  https://doi.org/10.15252/embj.2022111148
  21. Front Immunol. 2022 ;13 1079962
      Alcohol abuse, reported by 1/8th critically ill patients, is an independent risk factor for death in sepsis. Sepsis kills over 270,000 patients/year in the US. We reported that the ethanol-exposure suppresses innate-immune response, pathogen clearance, and decreases survival in sepsis-mice via sirtuin 2 (SIRT2). SIRT2 is an NAD+-dependent histone-deacetylase with anti-inflammatory properties. We hypothesized that in ethanol-exposed macrophages, SIRT2 suppresses phagocytosis and pathogen clearance by regulating glycolysis. Immune cells use glycolysis to fuel increased metabolic and energy demand of phagocytosis. Using ethanol-exposed mouse bone marrow- and human blood monocyte-derived macrophages, we found that SIRT2 mutes glycolysis via deacetylating key glycolysis regulating enzyme phosphofructokinase-platelet isoform (PFKP), at mouse lysine 394 (mK394, human: hK395). Acetylation of PFKP at mK394 (hK395) is crucial for PFKP function as a glycolysis regulating enzyme. The PFKP also facilitates phosphorylation and activation of autophagy related protein 4B (Atg4B). Atg4B activates microtubule associated protein 1 light chain-3B (LC3). LC3 is a driver of a subset of phagocytosis, the LC3-associated phagocytosis (LAP), which is crucial for segregation and enhanced clearance of pathogens, in sepsis. We found that in ethanol-exposed cells, the SIRT2-PFKP interaction leads to decreased Atg4B-phosphorylation, decreased LC3 activation, repressed phagocytosis and LAP. Genetic deficiency or pharmacological inhibition of SIRT2 reverse PFKP-deacetylation, suppressed LC3-activation and phagocytosis including LAP, in ethanol-exposed macrophages to improve bacterial clearance and survival in ethanol with sepsis mice.
    Keywords:  LC3-associated phagocytosis; Sirtuin 2; ethanol-exposure; glycolysis; macrophage; phagocytosis; sepsis
    DOI:  https://doi.org/10.3389/fimmu.2022.1079962
  22. bioRxiv. 2023 Feb 22. pii: 2023.02.21.528863. [Epub ahead of print]
      Mitochondrial reactive oxygen species (mROS) are central to physiology. While excess mROS production has been associated with several disease states, its precise sources, regulation, and mechanism of generation in vivo remain unknown, limiting translational efforts. Here we show that in obesity, hepatic ubiquinone (Q) synthesis is impaired, which raises the QH 2 /Q ratio, driving excessive mROS production via reverse electron transport (RET) from site I Q in complex I. Using multiple complementary genetic and pharmacological models in vivo we demonstrated that RET is critical for metabolic health. In patients with steatosis, the hepatic Q biosynthetic program is also suppressed, and the QH 2 /Q ratio positively correlates with disease severity. Our data identify a highly selective mechanism for pathological mROS production in obesity, which can be targeted to protect metabolic homeostasis.
    DOI:  https://doi.org/10.1101/2023.02.21.528863
  23. Front Immunol. 2023 ;14 1033497
      Introduction: Although multiple targeted treatments have appeared, hepatocellular carcinoma (HCC) is still one of the most common causes of cancer-related deaths. The immunosuppressive tumor microenvironment (TME) is a critical factor in the oncogenesis and progression of HCC. The emerging scRNA-seq makes it possible to explore the TME at a high resolution. This study was designed to reveal the immune-metabolic crosstalk between immune cells in HCC and provide novel strategies to regulate immunosuppressive TME.Method: In this study, we performed scRNA-seq on paired tumor and peri-tumor tissues of HCC. The composition and differentiation trajectory of the immune populations in TME were portrayed. Cellphone DB was utilized to calculate interactions between the identified clusters. Besides, flow cytometry, RT-PCR and seahorse experiments were implemented to explore potential metabolic and epigenetic mechanisms of the inter-cellular interaction.
    Result: A total of 19 immune cell clusters were identified and 7 were found closely related to HCC prognosis. Besides, differentiation trajectories of T cells were also presented. Moreover, a new population, CD3+C1q+ tumor-associated macrophages (TAM) were identified and found significantly interacted with CD8+ CCL4+T cells. Compared to the peri-tumor tissue, their interaction was attenuated in tumor. Additionally, the dynamic presence of this newly found cluster was also verified in the peripheral blood of patients with sepsis. Furthermore, we found that CD3+C1q+TAM affected T cell immunity through C1q signaling-induced metabolic and epigenetic reprogramming, thereby potentially affecting tumor prognosis.
    Conclusion: Our study revealed the interaction between CD3+C1q+TAM and CD8+ CCL4+T cells and may provide implications for tackling the immunosuppressive TME in HCC.
    Keywords:  C1q; HCC; T cell; immunometabolism; tumor-associated macrophage
    DOI:  https://doi.org/10.3389/fimmu.2023.1033497
  24. EMBO J. 2023 Mar 02. e111450
      Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.
    Keywords:  CALHM; NK cells; immune synapse; infection; macrophages
    DOI:  https://doi.org/10.15252/embj.2022111450
  25. Immunobiology. 2023 Feb 27. pii: S0171-2985(23)00030-X. [Epub ahead of print]228(3): 152362
      Lipopolysaccharide induced monocytes/macrophages exhibit a pro-inflammatory M1 phenotype. Elevated levels of the purine nucleoside adenosine play a major role in this response. The role of adenosine receptor modulation in directing the macrophage phenotype switch from proinflammatory classically activated M1 phenotype to an anti-inflammatory alternatively activated M2 phenotype is investigated in this study. The mouse macrophage cell line RAW 264.7 was used as the experimental model and stimulated with Lipopolysaccharide (LPS) at a dose of 1 μg/ml. Adenosine receptors were activated by treating cells with the receptor agonist NECA (1 μM). Adenosine receptor stimulation in macrophages is found to suppress LPS-induced production of proinflammatory mediators (pro-inflammatory cytokines, Reactive Oxygen Species and nitrite levels). M1 marker CD38 (Cluster of Differentiation 38) and CD83 (Cluster of Differentiation 83) were significantly decreased while M2 markers Th2 cytokines, Arginase, TIMP (Tissue Inhibitor of Metalloproteinases) and CD206 (Cluster of Differentiation 206) exhibited an increase. Hence from our study we observed that activation of adenosine receptors can program the macrophages from a pro-inflammatory classically activated M1 phenotype to an anti-inflammatory alternatively activated M2 phenotype. We report the significance and a time course profile of phenotype switching by receptor activation. Adenosine receptor targeting may be explored as a therapeutic intervention strategy in addressing acute inflammation.
    Keywords:  Adenosine receptor; Alternative macrophage activation; Classical macrophage activation; Endotoxin; Inflammation; NECA
    DOI:  https://doi.org/10.1016/j.imbio.2023.152362
  26. Microbiol Spectr. 2023 Feb 28. e0219422
      Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.
    Keywords:  COVID-19; data integration; inflammation; metabolomics
    DOI:  https://doi.org/10.1128/spectrum.02194-22
  27. EMBO Mol Med. 2023 Mar 01. e15674
      Besides genetic alterations, the cellular environment also determines disease onset and progression. When different cell types contribute to disease outcome, this imposes environmental challenges as different cell types likely differ in their extracellular dependencies. Hsa-microRNA-31-5p (miR-31) is highly expressed in keratinocytes of psoriatic skin, and we show that expression in keratinocytes is induced by limited glucose availability and enables increased survival under limiting glucose conditions by increasing glutamine metabolism. In addition, miR-31 expression results in not only secretion of specific metabolites (aspartate and glutamate) but also secretion of immunomodulatory factors. We show that this miR-31-induced secretory phenotype is sufficient to induce Th17 cell differentiation, a hallmark of psoriasis. Inhibitors of miR31-induced metabolic rewiring and metabolic crosstalk with immune cells alleviate psoriasis pathology in a mouse model of psoriasis. Together our data illustrate an emerging concept of metabolic interaction across cell compartments that characterizes disease development, which can be employed to design effective treatment options for disease, as shown here for psoriasis.
    Keywords:  T helper 17 cells; glutaminolysis; metabolism reprogramming; miR-31; psoriasis
    DOI:  https://doi.org/10.15252/emmm.202215674
  28. J Lipid Res. 2023 Feb 25. pii: S0022-2275(23)00023-8. [Epub ahead of print] 100350
      Neuroinflammation, a major hallmark of Alzheimer's disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via apolipoprotein E (ApoE)-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.
    Keywords:  25-hydroxycholesterol; Alzheimer disease; Neuroinflammation; apolipoprotein E; astrocyte; cholesterol metabolism; microglia; oxysterols
    DOI:  https://doi.org/10.1016/j.jlr.2023.100350
  29. Front Immunol. 2023 ;14 1107670
      Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
    Keywords:  mitochondrial damage; oxidative stress; reactive oxygen species; rheumatoid arthritis; targeted drugs
    DOI:  https://doi.org/10.3389/fimmu.2023.1107670
  30. Immunity. 2023 Feb 25. pii: S1074-7613(23)00037-7. [Epub ahead of print]
      Dietary components and metabolites have a profound impact on immunity and inflammation. Here, we investigated how sensing of cholesterol metabolite oxysterols by γδ T cells impacts their tissue residency and function. We show that dermal IL-17-producing γδ T (Tγδ17) cells essential for skin-barrier homeostasis require oxysterols sensing through G protein receptor 183 (GPR183) for their development and inflammatory responses. Single-cell transcriptomics and murine reporter strains revealed that GPR183 on developing γδ thymocytes is needed for their maturation by sensing medullary thymic epithelial-cell-derived oxysterols. In the skin, basal keratinocytes expressing the oxysterol enzyme cholesterol 25-hydroxylase (CH25H) maintain dermal Tγδ17 cells. Diet-driven increases in oxysterols exacerbate Tγδ17-cell-mediated psoriatic inflammation, dependent on GPR183 on γδ T cells. Hence, cholesterol-derived oxysterols control spatially distinct but biologically linked processes of thymic education and peripheral function of dermal T cells, implicating diet as a focal parameter of dermal Tγδ17 cells.
    Keywords:  GPR183; IL-17; cholesterol; diet; gamma delta T cells; mTEC; oxysterols; psoriasis; skin
    DOI:  https://doi.org/10.1016/j.immuni.2023.01.025
  31. Metabolism. 2023 Apr;pii: S0026-0495(22)00273-6. [Epub ahead of print]141 155395
      BACKGROUND: Mitochondria regulate immune and organ function. It is unknown whether higher intracellular drug levels observed in peripheral blood mononuclear cells (PBMCs) treated with tenofovir alafenamide (TAF) compared to tenofovir disoproxil fumarate (TDF) may alter mitochondrial function and energy production in immune cells in HIV(+) patients.METHODS: Cellular bioenergetics were determined in PBMCs from HIV-1(-) participants exposed to TAF versus TDF in vitro, at a comparable concentration to a clinically relevant plasma exposure. A decrease in cellular oxygen consumption rate (OCR) at baseline (basal-OCR) and under cellular stress (max-OCR) may suggest mitochondrial dysfunction. We also assessed the in vivo impact of TAF vs TDF on OCR in PBMCs from 26 people with HIV (PWH) interchanged from TDF-based to TAF-based antiretroviral therapy (ART) over a 9-month period in the setting of an open label clinical trial. The Wilcoxon and Mann Whitney tests were used for comparison of continuous variables.
    RESULTS: PBMCs from HIV-1(-) participants exposed in vitro to a concentration of 0.12-3.3 μM for TAF and TDF at 2 and 24 h, reduced basal and maximal OCR compared to vehicle control. Switch studies of antivirals (TAF vs TDF) within the same PWH showed that TAF-based ART was associated with reduced OCR compared to TDF-based ART in PBMCs. We observed that TAF-treated PBMCs selectively relied more on glucose/pyruvate supply rather than fatty acid to fuel their mitochondria.
    CONCLUSIONS: Compared to TDF, TAF may alter bioenergetics in immune cells from PWH in vitro and in vivo. The clinical significance in terms of the differential impact caused by TAF versus TDF on mitochondrial function and energy production in immune cells, a regulator of immune function, requires further studied in HIV, preexposure prophylaxis and hepatitis B.
    Keywords:  Antivirals; HIV; Immune cells; Metabolism; Mitochondria; Tenofovir alafenamide (TAF); Tenofovir disoproxil fumarate (TDF)
    DOI:  https://doi.org/10.1016/j.metabol.2022.155395