bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2022–05–01
fourteen papers selected by
Pierpaolo Ginefra, Ludwig Institute for Cancer Research



  1. Nat Chem Biol. 2022 May;18(5): 470-481
      T cells orchestrate adaptive immunity against pathogens and other immune challenges, but their dysfunction can also mediate the pathogenesis of cancer and autoimmunity. Metabolic adaptation in response to immunological and microenvironmental signals contributes to T cell function and fate decision. Lipid metabolism has emerged as a key regulator of T cell responses, with selective lipid metabolites serving as metabolic rheostats to integrate environmental cues and interplay with intracellular signaling processes. Here, we discuss how extracellular, de novo synthesized and membrane lipids orchestrate T cell biology. We also describe the roles of lipids as regulators of intracellular signaling at the levels of transcriptional, epigenetic and post-translational regulation in T cells. Finally, we summarize therapeutic targeting of lipid metabolism and signaling, and conclude with a discussion of important future directions. Understanding the molecular and functional interplay between lipid metabolism and T cell biology will ultimately inform therapeutic intervention for human disease.
    DOI:  https://doi.org/10.1038/s41589-022-01017-3
  2. Nat Commun. 2022 Apr 26. 13(1): 2240
      Cognate antigen signal controls CD8+ T cell priming, expansion size and effector versus memory cell fates, but it is not known if and how it modulates the functional features of memory CD8+ T cells. Here we show that the strength of T cell receptor (TCR) signaling controls the requirement for interleukin-2 (IL-2) signals to form a pool of memory CD8+ T cells that competitively re-expand upon secondary antigen encounter. Combining strong TCR and intact IL-2 signaling during priming synergistically induces genome-wide chromatin accessibility in regions targeting a wide breadth of biological processes, consistent with greater T cell functional fitness. Chromatin accessibility in promoters of genes encoding for stem cell, cell cycle and calcium-related proteins correlates with faster intracellular calcium accumulation, initiation of cell cycle and more robust expansion. High-dimensional flow-cytometry analysis of these T cells also highlights higher diversity of T cell subsets and phenotypes with T cells primed with stronger TCR and IL-2 stimulation than those primed with weaker strengths of TCR and/or IL-2 signals. These results formally show that epitope selection in vaccine design impacts memory CD8+ T cell epigenetic programming and function.
    DOI:  https://doi.org/10.1038/s41467-022-29718-2
  3. Sci Immunol. 2022 Apr 29. 7(70): eabm8161
      Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.
    DOI:  https://doi.org/10.1126/sciimmunol.abm8161
  4. Int Immunol. 2022 Apr 23. pii: dxac013. [Epub ahead of print]
      In T cell biology, 'exhaustion' was initially described as a hyporesponsive state in CD8 + T cells during chronic infections. Recently, exhaustion has been recognized as a T-cell dysfunctional state in the tumor microenvironment (TME). The term 'exhaustion' is used mainly to refer to effector T cells with a reduced capacity to secrete cytokines and an increased expression of inhibitory receptors. The upregulation of exhaustion-related inhibitory receptors, including programmed cell death protein 1 (PD-1), in such T cells has been associated with the development of tumors, prompting the development of immune checkpoint inhibitors. In addition to CD8 + T cells, CD4 + T cells, including the regulatory T (Treg) cell subset, perform a wide variety of functions within the adaptive immune system. Upregulation of the same inhibitory receptors that are associated with CD8 + T-cell exhaustion has also been identified in CD4 + T cells in chronic infections and cancers, suggesting a similar CD4 + T-cell exhaustion phenotype. For instance, high expression of PD-1 has been observed in Treg cells in the TME, and such Treg cells can play an important role in the resistance to PD-1 blockade therapies. Furthermore, recent progress in single-cell RNA sequencing has shown that CD4 + T cells with cytotoxic activity are also vulnerable to exhaustion. In this review, we will discuss novel insights into various exhausted T-cell subsets, which could reveal novel therapeutic targets and strategies to induce a robust antitumor immune response.
    Keywords:  CD4 + T cell; T-cell exhaustion; cytotoxic CD4 + T cell; regulatory T cell
    DOI:  https://doi.org/10.1093/intimm/dxac013
  5. J Exp Med. 2022 Jun 06. pii: e20210749. [Epub ahead of print]219(6):
      Improving the efficacy of immune checkpoint therapies will require a better understanding of how immune cells are recruited and sustained in tumors. Here, we used the photoconversion of the tumor immune cell compartment to identify newly entering lymphocytes, determine how they change over time, and investigate their egress from the tumor. Combining single-cell transcriptomics and flow cytometry, we found that while a diverse mix of CD8 T cell subsets enter the tumor, all CD8 T cells retained within this environment for more than 72 h developed an exhausted phenotype, revealing the rapid establishment of this program. Rather than forming tumor-resident populations, non-effector subsets, which express TCF-1 and include memory and stem-like cells, were continuously recruited into the tumor, but this recruitment was balanced by concurrent egress to the tumor-draining lymph node. Thus, the TCF-1+ CD8 T cell niche in tumors is highly dynamic, with the circulation of cells between the tumor and peripheral lymphoid tissue to bridge systemic and intratumoral responses.
    DOI:  https://doi.org/10.1084/jem.20210749
  6. Geroscience. 2022 Apr 28.
      Adipose tissue dysfunction is strongly linked to the development of chronic inflammation and cardiometabolic disorders in aging. While much attention has been given to the role of resident adipose tissue immune cells in the disruption of homeostasis in obesity, age-specific effects remain understudied. Here, we identified and characterized a population of γδ T cells, which show unique age-dependent accumulation in the visceral adipose tissue (VAT) of both mice and humans. Diet-induced obesity likewise increased γδ T cell numbers; however, the effect was greater in the aged where the increase was independent of fat mass. γδ T cells in VAT express a tissue-resident memory T cell phenotype (CD44hiCD62LlowCD69+) and are predominantly IL-17A-producing cells. Transcriptome analyses of immunomagnetically purified γδ T cells identified significant age-associated differences in expression of genes related to inflammation, immune cell composition, and adipocyte differentiation, suggesting age-dependent qualitative changes in addition to the quantitative increase. Genetic deficiency of γδ T cells in old age improved the metabolic phenotype, characterized by increased respiratory exchange ratio, and lowered levels of IL-6 both systemically and locally in VAT. Decreased IL-6 was predominantly due to reduced production by non-immune stromal cells, primarily preadipocytes, and adipose-derived stem cells. Collectively, these findings suggest that an age-dependent increase of tissue-resident γδ T cells in VAT contributes to local and systemic chronic inflammation and metabolic dysfunction in aging.
    Keywords:  Adipose tissue; Aging; Chronic inflammation; Gamma delta T cells; Obesity
    DOI:  https://doi.org/10.1007/s11357-022-00572-w
  7. Front Aging. 2021 ;pii: 667193. [Epub ahead of print]2
      Decline of immune function during aging has in part been ascribed to the accumulation of regulatory T cells (Tregs) and decreased T-cell responses with age. Aside from changes to T cells that occur over a lifetime, the impact of intracellular aging processes such as compromised DNA repair on T cells remains incompletely defined. Here we aimed to define the impact of compromised DNA repair on T-cell phenotype and responsiveness by studying T cells from mice with a deficiency in their DNA excision-repair gene Ercc1. These Ercc1 mutant (Ercc1 -/Δ7 ) mice show accumulation of nuclear DNA damage resulting in accelerated aging. Similarly to wild-type aged mice, Ercc1 -/Δ7 mice accumulated Tregs with reduced CD25 and increased PD-1 expression among their naive T cells. Ercc1-deficiency limited the capacity of Tregs, helper T cells, and cytotoxic T cells to proliferate and upregulate CD25 in response to T-cell receptor- and IL-2-mediated stimulation. The recent demonstration that the mammalian target of rapamycin (mTOR) may impair DNA repair lead us to hypothesize that changes induced in the T-cell population by compromised DNA repair may be slowed down or reversed by blocking mTOR with rapamycin. In vivo dietary treatment of Ercc1 -/Δ7 mice with rapamycin did not reduce Treg levels, but highly increased the proportion of CD25+ and PD-1+ memory Tregs instead. Our study elucidates that compromised DNA repair promotes the accumulation of Tregs with an aging-related phenotype and causes reduced T-cell responsiveness, which may be independent of mTOR activation.
    Keywords:  DNA damage; T cells; aging; ercc1; mTOR; nucleotide excision repair; rapamycin; regulatory T cells
    DOI:  https://doi.org/10.3389/fragi.2021.667193
  8. J Invest Dermatol. 2022 Apr 22. pii: S0022-202X(22)00301-3. [Epub ahead of print]
      Mutations in SLC45A2 are responsible for oculocutaneous albinism type 4 in many species and associated with melanoma susceptibility, but the molecular mechanism is unclear. Here, we used Slc45a2-deficient melanocyte and mouse models to elucidate the roles of Slc45a2 in melanogenesis and melanoma metastasis. We find that the acidified cellular environment impairs the activity of key melanogenic enzyme tyrosinase in Slc45a2-deficient melanocytes. Slc45a2 is identified as a proton/glucose exporter in melanosomes, and its ablation increases acidification of melanosomal pH through enhanced glycolysis. Intriguingly, 13C-glucose labeled metabolic flux and biochemical assays show that melanosomes are active glucose-metabolizing organelles, indicating that elevated glycolysis mainly occurs in melanosomes due to Slc45a2-deficiency. Moreover, Slc45a2-deficiency significantly up-regulates the activities of glycolytic enzymes and PI3K/Akt signaling to promote glycolysis-dependent survival and metastasis of melanoma cells. Collectively, our study reveals that the H+/glucose exporter Slc45a2 mediates melanin synthesis and melanoma metastasis primarily via modulating melanosomal glucose metabolism.
    Keywords:  Slc45a2; glucose uptake; melanoma metastasis; melanosomal glycolysis
    DOI:  https://doi.org/10.1016/j.jid.2022.04.008
  9. Nat Immunol. 2022 Apr 29.
      The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.
    DOI:  https://doi.org/10.1038/s41590-022-01194-2
  10. JCI Insight. 2022 Apr 28. pii: e155534. [Epub ahead of print]
      Insight into processes that determine CD8+ T cell memory formation has been obtained from infection models. These models are biased toward an inflammatory milieu and often employ high avidity CD8+ T cells in adoptive transfer procedures. It is unclear whether these conditions mimic the differentiation processes of an endogenous repertoire that proceed upon non-inflammatory conditions prevailing in premalignant tumor lesions. We examined the role of cytolytic capacity on CD8+ T cell fate decisions when primed by tumor cells or by minor histocompatibility antigen-mismatched leukocytes. CD8+ memory commitment was analyzed in Ebag9-deficient mice that exhibit an enhanced tumor cell lysis. This property endowed Ebag9-/- mice with extended control of Tcl-1 oncogene-induced chronic lymphocytic leukemia progression. In Ebag9-/- mice, an expanded memory population was obtained for anti-HY and anti-SV40 T antigen-specific T cells, despite unchanged effector frequencies in the primary response. By comparing the single-cell transcriptomes of CD8+ T cells responding to tumor cell vaccination, we found differential distribution of subpopulations between Ebag9+/+ and Ebag9-/- T cells. In Ebag9-/- cells, these larger clusters contained genes encoding transcription factors regulating memory cell differentiation, along with anti-apoptotic gene functions. Our findings link EBAG9-controlled cytolytic activity and the commitment to the CD8+ memory lineage.
    Keywords:  Adaptive immunity; Immunology; Leukemias; Oncology; T cells
    DOI:  https://doi.org/10.1172/jci.insight.155534
  11. JCI Insight. 2022 Apr 26. pii: e147814. [Epub ahead of print]
      Hvcn1 is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of reactive oxygen species (ROS). The increased expression of this channel in some cancers, has led to proposing Hvcn1 antagonists as potential therapeutics.While its role in most leukocytes has been studied in-depth, the function of Hvcn1 in T-cells remains poorly defined. We show that HVCN1 plays a non-redundant role in protecting naïve T-cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T-cells display profound differences during the transition from naïve to primed T-cells, including in the preservation of TCR signaling, cellular division and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naïve CD4+ T-cells reprogram to rescue the glycolytic pathway, naïve CD8+ T-cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation.These observations imply heterogeneity between adaptation of naïve CD4+ and CD8+ T-cells to intracellular acidification during activation.
    Keywords:  Adaptive immunity; Immunology
    DOI:  https://doi.org/10.1172/jci.insight.147814
  12. Autophagy. 2022 Apr 26. 1-2
      Cancer cells metabolize glutamine mostly through glutaminolysis, a metabolic pathway that activates MTORC1. The AMPK-MTORC1 signaling axis is a key regulator of cell growth and proliferation. Our recent investigation identified that the connection between glutamine and AMPK is not restricted to glutaminolysis. Rather, we demonstrated the crucial role of ASNS (asparagine synthetase (glutamine-hydrolyzing)) and the GABA shunt for the metabolic control of the AMPK-MTORC1 axis during glutamine sufficiency. Our results elucidated a metabolic network by which glutamine metabolism regulates the MTORC1-macroautophagy/autophagy pathway through two independent branches involving glutaminolysis and ASNS-GABA shunt.
    Keywords:  ASNS; GABA-shunt; MTORC1; glutamine; glutamoptosis
    DOI:  https://doi.org/10.1080/15548627.2022.2062875