bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2024‒10‒13
fourteen papers selected by
Pierpaolo Ginefra, Ludwig Institute for Cancer Research



  1. Nat Immunol. 2024 Oct 07.
      The activation and functional differentiation of CD8+ T cells are linked to metabolic pathways that result in the production of lactate. Lactylation is a lactate-derived histone post-translational modification; however, the relevance of histone lactylation in the context of CD8+ T cell activation and function is not known. Here, we show the enrichment of H3K18 lactylation (H3K18la) and H3K9 lactylation (H3K9la) in human and mouse CD8+ T cells, which act as transcription initiators of key genes regulating CD8+ T cell function. Further, we note distinct patterns of H3K18la and H3K9la in CD8+ T cell subsets linked to their specific metabolic profiles. Additionally, we find that modulation of H3K18la and H3K9la by targeting metabolic and epigenetic pathways influence CD8+ T cell effector function, including antitumor immunity, in preclinical models. Overall, our study uncovers the potential roles of H3K18la and H3K9la in CD8+ T cells.
    DOI:  https://doi.org/10.1038/s41590-024-01985-9
  2. Nat Commun. 2024 Oct 06. 15(1): 8658
      The intensive nutrient requirements needed to sustain T cell activation and proliferation, combined with competition for nutrients within the tumor microenvironment, raise the prospect that glucose availability may limit CAR-T cell function. Here, we seek to test the hypothesis that stable overexpression (OE) of the glucose transporter GLUT1 in primary human CAR-T cells would improve their function and antitumor potency. We observe that GLUT1OE in CAR-T cells increases glucose consumption, glycolysis, glycolytic reserve, and oxidative phosphorylation, and these effects are associated with decreased T cell exhaustion and increased Th17 differentiation. GLUT1OE also induces broad metabolic reprogramming associated with increased glutathione-mediated resistance to reactive oxygen species, and increased inosine accumulation. When challenged with tumors, GLUT1OE CAR-T cells secrete more proinflammatory cytokines and show enhanced cytotoxicity in vitro, and demonstrate superior tumor control and persistence in mouse models. Our collective findings support a paradigm wherein glucose availability is rate limiting for effector CAR-T cell function and demonstrate that enhancing glucose availability via GLUT1OE could augment antitumor immune function.
    DOI:  https://doi.org/10.1038/s41467-024-52666-y
  3. Adv Sci (Weinh). 2024 Oct 07. e2403438
      CD8+ T cells play a critical role in cancer immune-surveillance and pathogen elimination. However, their effector function can be severely impaired by inhibitory receptors such as programmed death-1 (PD-1) and T cell immunoglobulin domain and mucin domain-3 (Tim-3). Here Siglec-G is identified as a coinhibitory receptor that limits CD8+ T cell function. Siglec-G is highly expressed on tumor-infiltrating T cells and is enriched in the exhausted T cell subset. Ablation of Siglec-G enhances the efficacy of adoptively transferred T cells and chimeric antigen receptor (CAR) T cells in suppressing solid tumors growth. Mechanistically, sialoglycan ligands, such as CD24 on tumor cells, activate the Siglec-G-SHP2 axis in CD8+ T cells, impairing metabolic reprogramming from oxidative phosphorylation to glycolysis, which dampens cytotoxic T lymphocyte (CTL) activation, expansion, and cytotoxicity. These findings discover a critical role for Siglec-G in inhibiting CD8+ T cell responses, suggesting its potential therapeutic effect in adoptive T cell therapy and tumor immunotherapy.
    Keywords:  CD8+ T cells; Siglec‐G; metabolic rewiring; tumor immunotherapy
    DOI:  https://doi.org/10.1002/advs.202403438
  4. Immunometabolism (Cobham). 2024 Oct;6(4): e00048
      Hematopoietic stem cells (HSCs) are the multipotent progenitors of all immune cells. During aging, their regenerative capacity decreases for reasons that are not well understood. Recently, Song et al investigated the roles of two metabolic proteins in age-related HSC dysfunction: CD38 (a membrane-bound NADase) and the mitochondrial calcium uniporter that transports calcium into the mitochondrial matrix. They found that the interplay between these proteins is deranged in aged HSCs, contributing to their diminished renewal capacity. These findings implicate compromised nicotinamide adenine dinucleotide metabolism as underlying HSC dysfunction in aging.
    Keywords:  CD38; aging; hematopoiesis; mitochondria; mitochondrial calcium uniporter; nicotinamide adenine dinucleotide metabolism
    DOI:  https://doi.org/10.1097/IN9.0000000000000048
  5. Front Immunol. 2024 ;15 1476904
      A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
    Keywords:  CD8 + T cell; T cell exhaustion; adoptive T cell treatment; immune checkpoint blockade; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2024.1476904
  6. Science. 2024 Oct 11. 386(6718): 148-149
      Targeting epigenetic regulators prevents T cell exhaustion.
    DOI:  https://doi.org/10.1126/science.ads6217
  7. Science. 2024 Oct 11. 386(6718): eadl4492
      Epigenetic reinforcement of T cell exhaustion is known to be a major barrier limiting T cell responses during immunotherapy. However, the core epigenetic regulators restricting antitumor immunity during prolonged antigen exposure are not clear. We investigated three commonly mutated epigenetic regulators that promote clonal hematopoiesis to determine whether they affect T cell stemness and response to checkpoint blockade immunotherapy. CD8 T cells lacking Dnmt3a, Tet2, or Asxl1 preserved a progenitor-exhausted (Tpex) population for more than 1 year during chronic antigen exposure without undergoing malignant transformation. Asxl1 controlled the self-renewal capacity of T cells and reduced CD8 T cell differentiation through H2AK119 ubiquitination and epigenetic modification of the polycomb group-repressive deubiquitinase pathway. Asxl1-deficient T cells synergized with anti-PD-L1 immunotherapy to improve tumor control in experimental models and conferred a survival advantage to mutated T cells from treated patients.
    DOI:  https://doi.org/10.1126/science.adl4492
  8. Immunity. 2024 Oct 08. pii: S1074-7613(24)00455-2. [Epub ahead of print]57(10): 2269-2279
      The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4+ T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.
    Keywords:  PRDM16; RORγT; Th17 cells; dendritic cells; dysbiosis; food allergy; inflammation; innate lymphoid cells; peripheral Treg; tolerance
    DOI:  https://doi.org/10.1016/j.immuni.2024.09.011
  9. Front Oncol. 2024 ;14 1435480
      Tumor cells can undergo metabolic adaptations that support their growth, invasion, and metastasis, such as reprogramming lipid metabolism to meet their energy demands and to promote survival in harsh microenvironmental conditions, including hypoxia and acidification. Metabolic rewiring, and especially alterations in lipid metabolism, not only fuel tumor progression but also influence immune cell behavior within the tumor microenvironment (TME), leading to immunosuppression and immune evasion. These processes, in turn, may contribute to the metastatic spread of cancer. The diverse metabolic profiles of immune cell subsets, driven by the TME and tumor-derived signals, contribute to the complex immune landscape in tumors, affecting immune cell activation, differentiation, and effector functions. Understanding and targeting metabolic heterogeneity among immune cell subsets will be crucial for developing effective cancer immunotherapies that can overcome immune evasion mechanisms and enhance antitumor immunity.
    Keywords:  cancer immunotherapy; lipid metabolism; metabolic adaptations; tumor metabolism; tumor micreoenvironment (TME)
    DOI:  https://doi.org/10.3389/fonc.2024.1435480
  10. bioRxiv. 2024 Sep 24. pii: 2024.09.22.614388. [Epub ahead of print]
      T cell-targeted therapies are commonly used to manage T cell hyperactivity in autoimmune disorders, graft-versus-host diseases (GVHD), and transplant rejections. However, many patients experience significant side effects or inadequate responses to current treatments, highlighting the urgent need for alternative strategies. In this study, we searched for regulators of T cells through proximity labeling with APEX2 to detect proteins interacting with CD8α, a coreceptor of the T-cell receptor (TCR). This screen revealed TMX1, an ER resident transmembrane disulfide oxidoreductase, is essential for T cell cytotoxicity and NFAT, NFκB, and AP1 signaling but not cell proliferation. TMX1 deletion decreases surface TCR expression and destabilizes CD3ζ, a subunit of TCR complex; however, overexpression of CD3ζ rescues the phenotype, suggesting that TMX1 is not required for CD3ζ function. Mechanistically, TMX1 was found to directly engage the CxxC motif of CD3δ, which has been reported to be essential for proper TCR assembly and function. We hypothesize that the loss of TMX1 interaction with CD3δ leads to impaired TCR assembly and subsequent CD3ζ destabilization. These findings identify TMX1 as a novel regulator of T-cell receptor assembly and a potential target for immunosuppressive therapy.
    DOI:  https://doi.org/10.1101/2024.09.22.614388
  11. bioRxiv. 2024 Sep 29. pii: 2024.09.26.615290. [Epub ahead of print]
      BACKGROUND: Chimeric antigen receptor T cell (CART) therapy has seen great clinical success. However, up to 50% of leukemia patients relapse and long-term survivor data indicate that CART cell persistence is key to enforcing relapse-free survival. Unfortunately, ex vivo expansion protocols often drive metabolic and functional exhaustion, reducing in vivo efficacy. Preclinical models have demonstrated that redirecting metabolism ex vivo can improve in vivo T cell function and we hypothesized that exposure to an agonist targeting the metabolic regulator AMP-activated protein kinase (AMPK), would create CARTs capable of both efficient leukemia clearance and increased in vivo persistence.METHODS: CART cells were generated from healthy human via lentiviral transduction. Following activation, cells were exposed to either Compound 991 or DMSO for 96 hours, followed by a 48-hour washout. During and after agonist treatment, T cells were harvested for metabolic and functional assessments. To test in vivo efficacy, immunodeficient mice were injected with luciferase+ NALM6 leukemia cells, followed one week later by either 991- or DMSO-expanded CARTs. Leukemia burden and anti-leukemia efficacy was assessed via radiance imaging and overall survival.
    RESULTS: Human T cells expanded in Compound 991 activated AMPK without limiting cellular expansion and gained both mitochondrial density and improved handling of reactive oxygen species (ROS). Importantly, receipt of 991-exposed CARTs significantly improved in vivo leukemia clearance, prolonged recipient survival, and increased CD4+ T cell yields at early times post-injection. Ex vivo, 991 agonist treatment mimicked nutrient starvation, increased autophagic flux, and promoted generation of mitochondrially-protective metabolites.
    DISCUSSION: Ex vivo expansion processes are necessary to generate sufficient cell numbers, but often promote sustained activation and differentiation, negatively impacting in vivo persistence and function. Here, we demonstrate that promoting AMPK activity during CART expansion metabolically reprograms cells without limiting T cell yield, enhances in vivo anti-leukemia efficacy, and improves CD4+ in vivo persistence. Importantly, AMPK agonism achieves these results without further modifying the expansion media, changing the CART construct, or genetically altering the cells. Altogether, these data highlight AMPK agonism as a potent and readily translatable approach to improve the metabolic profile and overall efficacy of cancer-targeting T cells.
    DOI:  https://doi.org/10.1101/2024.09.26.615290
  12. Nature. 2024 Oct 09.
      
    Keywords:  Ageing; Immunology; Metabolism; Nutrition
    DOI:  https://doi.org/10.1038/d41586-024-03055-4