Immun Inflamm Dis. 2024 Apr;12(4): e1241
BACKGROUND: Inflammation in adipose tissue, resulting from imbalanced caloric intake and energy expenditure, contributes to the metabolic dysregulation observed in obesity. The production of inflammatory cytokines, such as IL-1β and IL-18, plays a key role in this process. While IL-1β promotes insulin resistance and diabetes, IL-18 regulates energy expenditure and food intake. Previous studies have suggested that caspase-1, activated by the Nlrp3 inflammasome in response to lipid excess, mediates IL-1β production, whereas activated by the Nlrp1b inflammasome in response to energy excess, mediates IL-18 production. However, this has not been formally tested.
METHODS: Wild-type and caspase-1-deficient Balb/c mice, carrying the Nlrp1b1 allele, were fed with regular chow or a high-fat diet for twelve weeks. Food intake and mass gain were recorded weekly. At the end of the twelve weeks, glucose tolerance and insulin resistance were evaluated. Mature IL-18 protein levels and the inflammatory process in the adipose tissue were determined. Fasting lipid and cytokine levels were quantified in the sera of the different experimental groups.
RESULTS: We found that IL-18 production in adipose tissue is independent of caspase-1 activity, regardless of the metabolic state, while Nlrp3-mediated IL-1β production remains caspase-1 dependent. Additionally, caspase-1 null Balb/c mice did not develop metabolic abnormalities in response to energy excess from the high-fat diet.
CONCLUSION: Our findings suggest that IL-18 production in the adipose tissue is independent of Nlrp3 inflammasome and caspase-1 activation, regardless of caloric food intake. In contrast, Nlrp3-mediated IL-1β production is caspase-1 dependent. These results provide new insights into the mechanisms underlying cytokine production in the adipose tissue during both homeostatic conditions and metabolic stress, highlighting the distinct roles of caspase-1 and the Nlrp inflammasomes in regulating inflammatory responses.
Keywords: adipose tissue; animals; cytokines; diabetes; inflammation; macrophage; molecules