bims-instec Biomed News
on Intestinal stem cells and chemoresistance in colon cancer and intestinal regeneration
Issue of 2021–08–29
eightteen papers selected by
Maria-Virginia Giolito, IRFAC/UMR-S1113 INSERM



  1. Cells. 2021 Aug 13. pii: 2087. [Epub ahead of print]10(8):
      The primary cause of colorectal cancer (CRC) recurrence is increased distant metastasis after radiotherapy, so there is a need for targeted therapeutic approaches to reduce the metastatic-relapse risk. Dysregulation of the cell-surface glycoprotein podocalyxin-like protein (PODXL) plays an important role in promoting cancer-cell motility and is associated with poor prognoses for many malignancy types. We found that CRC cells exposed to radiation demonstrated increased TGFβ and PODXL expressions, resulting in increased migration and invasiveness due to increased extracellular matrix deposition. In addition, both TGFβ and PODXL were highly expressed in tissue samples from radiotherapy-treated CRC patients compared to those from patients without this treatment. However, it is unclear whether TGFβ and PODXL interactions are involved in cancer-progression resistance after radiation exposure in CRC. Here, using CRC cells, we showed that silencing PODXL blocked radiation-induced cell migration and invasiveness. Cell treatment with galunisertib (a TGFβ-pathway inhibitor) also led to reduced viability and migration, suggesting that its clinical use may enhance the cytotoxic effects of radiation and lead to the effective inhibition of CRC progression. Overall, the results demonstrate that downregulation of TGFβ and its-mediated PODXL may provide potential therapeutic targets for patients with radiotherapy-resistant CRC.
    Keywords:  PODXL; TGFβ; colorectal cancer; radioresistance
    DOI:  https://doi.org/10.3390/cells10082087
  2. Front Cell Dev Biol. 2021 ;9 684855
      Colorectal cancer (CRC) is often resistant to conventional therapies. Previous studies have reported the anticancer effects of vitamin D in several cancers, its role in radiotherapy (RT) remains unknown. We found that 1α, 25-dihydroxyvitamin D3 (VD3), the biologically active form of vitamin D, had antitumor effect on CRC and sensitized CRC cells to ionizing radiation (IR). VD3 demonstrated synergistic effect in combination with IR, which were detected by colony formation and cell proliferation assay. Radiosensitivity restoration induced by VD3 was associated with a series of phenotypes, including apoptosis, autophagy, and epithelial-mesenchymal transition (EMT). Using proteomics, "regulation of cell migration" and "cadherin" were found to be obviously enriched GO terms. Moreover, cystatin D and plasminogen activator inhibitor-1 (PAI-1), the differentially expressed proteins, were associated with EMT. Next, we confirmed the contributions of these two genes in enhancing IR sensitivity of CRC cells upon inhibition of EMT. As determined by proteomics, the mechanism underlying such sensitivity involved partially block of JAK/STAT3 signaling pathway. Furthermore, VD3 also elicited sensitization to RT in xenograft CRC models without additional toxicity. Our study revealed that VD3 was able to act in synergy with IR both in vitro and in vivo and could also confer radiosensitivity by regulating EMT, thereby providing a novel insight for elevating the efficacy of therapeutic regimens.
    Keywords:  colorectal cancer; epithelial-mesenchymal transition; radiosensitivity; radiotherapy; vitamin D
    DOI:  https://doi.org/10.3389/fcell.2021.684855
  3. Int J Mol Sci. 2021 Aug 06. pii: 8481. [Epub ahead of print]22(16):
      Colorectal cancer (CRC) is characterized by genetic heterogeneity and is often diagnosed at an advanced stage. Therefore, there is a need to identify novel predictive markers. Yin Yang 1 (YY1) is a transcription factor playing a dual role in cancer. The present study aimed to investigate whether YY1 expression levels influence CRC cell response to therapy and to identify the transcriptional targets involved. The diagnostic and prognostic values of YY1 and the identified factor(s) in CRC patients were also explored. Silencing of YY1 increased the resistance to 5-Fluorouracil-induced cytotoxicity in two out of four CRC cells with different genotypes. BCL2L15/Bfk pro-apoptotic factor was found selectively expressed in the responder CRC cells and downregulated upon YY1 knockdown. CRC dataset analyses corroborated a tumor-suppressive role for both YY1 and BCL2L15 whose expressions were inversely correlated with aggressiveness. CRC single-cell sequencing dataset analyses demonstrated higher co-expression levels of both YY1 and BCL2L15 within defined tumor cell clusters. Finally, elevated levels of YY1 and BCL2L15 in CRC patients were associated with larger relapse-free survival. Given their observed anti-cancer role, we propose YY1 and BCL2L15 as candidate diagnostic and prognostic CRC biomarkers.
    Keywords:  BCL2L15/Bfk; Yin Yang 1; biomarkers; colorectal cancer; tumor-suppressor
    DOI:  https://doi.org/10.3390/ijms22168481
  4. Cells. 2021 Aug 03. pii: 1970. [Epub ahead of print]10(8):
      Tumor recurrence from cancer stem cells (CSCs) and metastasis often occur post-treatment in colorectal cancer (CRC), leading to chemoresistance and resistance to targeted therapy. MYC is a transcription factor in the nuclei that modulates cell growth and development, and regulates immune response in an antitumor direction by mediating programmed death ligand 1 (PD-L1) and promoting CRC tumor recurrence after adjuvant chemotherapy. However, the molecular mechanism through which c-MYC maintains stemness and confers treatment resistance still remains elusive in CRC. In addition, recent reports demonstrated that CRC solid colon tumors expresses C-X-C motif chemokine ligand 8 (CXCL8). Expression of CXCL8 in CRC was reported to activate the expression of PD-L1 immune checkpoint through c-MYC, this ultimately induces chemoresistance in CRC. Accumulating studies have also demonstrated increased expression of CXCL8, matrix metalloproteinase 7 (MMP7), tissue inhibitor of metalloproteinase 1 (TIMP1), and epithelial-to-mesenchymal transition (EMT) components, in CRC tumors suggesting their potential collaboration to promote EMT and CSCs. TIMP1 is MMP-independent and regulates cell development and apoptosis in various cancer cell types, including CRC. Recent studies showed that TIMP1 cleaves CXCL8 on its chemoattractant, thereby influencing its mechanistic response to therapy. This therefore suggests crosstalk among the c-MYC/CXCL8/TIMP1 oncogenic signatures. In this study, we explored computer simulations through bioinformatics to identify and validate that the MYC/CXCL8/TIMP1 oncogenic signatures are overexpressed in CRC, Moreover, our docking results exhibited putative binding affinities of the above-mentioned oncogenes, with our novel small molecule, RV59, Finally, we demonstrated the anticancer activities of RV59 against NCI human CRC cancer cell lines both as single-dose and dose-dependent treatments, and also demonstrated the MYC/CXCL8/TIMP1 signaling pathway as a potential RV59 drug target.
    Keywords:  RV59; bioinformatics; cancer stem cells (CSCs); chemoresistance; immune checkpoint; small molecule
    DOI:  https://doi.org/10.3390/cells10081970
  5. Front Oncol. 2021 ;11 712348
      ARTEMIN (ARTN), one of the glial-cell derived neurotrophic factor family of ligands, has been reported to be associated with a number of human malignancies. In this study, the enhanced expression of ARTN in colorectal carcinoma (CRC) was observed; the expression of ARTN positively correlated with lymph node metastases and advanced tumor stages and predicted poor prognosis. Forced expression of ARTN in CRC cells enhanced oncogenic behavior, mesenchymal phenotype, stem cell-like properties and tumor growth and metastasis in a xenograft model. These functions were conversely inhibited by depletion of endogenous ARTN. Forced expression of ARTN reduced the sensitivity of CRC cells to 5-FU treatment; and 5-FU resistant CRC cells harbored enhanced expression of ARTN. The oncogenic functions of ARTN were demonstrated to be mediated by p44/42 MAP kinase dependent expression of CDH2 (CADHERIN 2, also known as N-CADHERIN). Inhibition of p44/42 MAP kinase activity or siRNA mediated depletion of endogenous CDH2 reduced the enhanced oncogenicity and chemoresistance consequent to forced expression of ARTN induced cell functions; and forced expression of CDH2 rescued the reduced mesenchymal properties and resistance to 5-FU after ARTN depletion. In conclusion, ARTN may be of prognostic and theranostic utility in CRC.
    Keywords:  ARTEMIN; CDH2; P44/42 MAPK; chemoresistance; colorectal carcinoma; metastasis
    DOI:  https://doi.org/10.3389/fonc.2021.712348
  6. Front Cell Dev Biol. 2021 ;9 696558
       Background: Cetuximab is an effective antibody to treat colorectal cancer (CRC) by targeting the epidermal growth factor receptor (EGFR). However, the mechanisms of acquired resistance to cetuximab therapy, especially in patients without identifiable gene mutations, are not fully understood.
    Methods: Our study investigated the role of pumilio RNA-binding family member 1 (PUM1) in cetuximab resistance. We established cetuximab-resistant colon cancer cell lines SW480R and Caco-2R and knocked out PUM1 and DEAD-box helicase 5 (DDX5) with the clustered regularly interspaced short palindromic repeats (CRISPR)-caspase 9 (Cas9) system. To check cell proliferation, we used Cell Counting Kit-8. We performed qPCR and immunoblot to examine the levels of mRNAs and proteins for each cell line.
    Results: Our data showed that PUM1 was upregulated in SW480R and Caco-2R cells with increased protein levels and cell proliferation, and PUM1 knockout reduced cell viability in the presence of cetuximab. We also found that PUM1 interacted with DDX5 in 3' untranslated region (UTR) and positively regulated its mRNA expression. Furthermore, suppression of DDX5 also decreased the proliferation of SW480R and Caco-2R cells.
    Conclusion: Our study suggests that PUM1 positively regulates DDX5 and acts as a promoter in cetuximab-resistant colon cancer cells.
    Keywords:  DDX5; PUM1; acquired resistance; cetuximab; colon cancer
    DOI:  https://doi.org/10.3389/fcell.2021.696558
  7. Cancers (Basel). 2021 Aug 13. pii: 4072. [Epub ahead of print]13(16):
      Colorectal cancer (CRC) belongs to the most common tumor types, and half of all CRC harbor missense mutations in the TP53 tumor suppressor gene. In addition to genetically caused loss of function of p53, epigenetic alterations (DNA methylation, histone modifications, micro-RNAs) contribute to CRC development. In this review, we focused on epigenetic alterations related to the entire p53 signaling pathway upstream and downstream of p53. Methylation of genes which activate p53 function has been reported, and methylation of APC and MGMT was associated with increased mutation rates of TP53. The micro-RNA 34a activates TP53 and was methylated in CRC. Proteins that regulate TP53 DNA methylation, mutations, and acetylation of TP53-related histones were methylated in CRC. P53 regulates the activity of numerous downstream proteins. Even if TP53 is not mutated, the function of wildtype p53 may be compromised if corresponding downstream genes are epigenetically inactivated. Thus, the role of p53 for CRC development, therapy response, and survival prognosis of patients may be much more eminent than previously estimated. Therefore, we propose that novel diagnostic devices measuring the entirety of genetic and epigenetic changes in the "p53 signalome" have the potential to improve the predictive and prognostic power in CRC diagnostics and management.
    Keywords:  acetylation; carcinogenesis; methylation; micro-RNA; oncogene; signal transduction; tumor suppressor
    DOI:  https://doi.org/10.3390/cancers13164072
  8. Int J Mol Sci. 2021 Aug 06. pii: 8470. [Epub ahead of print]22(16):
      Colorectal cancer (CRC) is a malignant tumor in the digestive system whose incidence and mortality is high-ranking among tumors worldwide. The initiation and progression of CRC is a complex process involving genetic alterations in cancer cells and multiple factors from the surrounding tumor cell microenvironment. As accumulating evidence has shown, tumor-associated macrophages (TAMs)-as abundant and active infiltrated inflammatory cells in the tumor microenvironment (TME)-play a crucial role in CRC. This review focuses on the different mechanisms of TAM in CRC, including switching of phenotypical subtypes; promoting tumor proliferation, invasion, and migration; facilitating angiogenesis; mediating immunosuppression; regulating metabolism; and interacting with the microbiota. Although controversy remains in clinical evidence regarding the role of TAMs in CRC, clarifying their significance in therapy and the prognosis of CRC may shed new light on the optimization of TAM-centered approaches in clinical care.
    Keywords:  colorectal cancer; macrophage; polarization; prognosis; therapy; tumor microenvironment (TME)
    DOI:  https://doi.org/10.3390/ijms22168470
  9. Gene. 2021 Aug 19. pii: S0378-1119(21)00489-3. [Epub ahead of print]804 145894
      Colorectal cancer (CRC) is the third most frequent cancer in human beings and is also the major cause of death among the other gastrointestinal cancers. The exact mechanisms of CRC development in most patients remains unclear. So far, several genetically, environmental and epigenetically risk factors have been identified for CRC development. The circadian rhythm is a 24-h rhythm that drives several biologic processes. The circadian system is guided by a central pacemaker which is located in the suprachiasmatic nucleus (SCN) in the hypothalamus. Circadian rhythm is regulated by circadian clock genes, cytokines and hormones like melatonin. Disruptions in biological rhythms are known to be strongly associated with several diseases, including cancer. The role of the different circadian genes has been verified in various cancers, however, the pathways of different circadian genes in the pathogenesis of CRC are less investigated. Identification of the details of the pathways in CRC helps researchers to explore new therapies for the malignancy.
    Keywords:  Bmal1; CLOCK gene; Circadian rhythm; Colorectal cancer (CRC); Timeless
    DOI:  https://doi.org/10.1016/j.gene.2021.145894
  10. Cells. 2021 Aug 09. pii: 2030. [Epub ahead of print]10(8):
      The hedgehog pathway, which plays a significant role in embryonic development and stem cell regulation, is activated in gastrointestinal cancers. Chemotherapy is widely used in cancer treatment. However, chemoresistance becomes a substantial obstacle in cancer therapy. This review focuses on the recent advances in the hedgehog pathway's roles in drug resistance of gastrointestinal cancers and the novel drugs and strategies targeting hedgehog signaling.
    Keywords:  chemotherapy; colorectal cancer; gastric cancer; pancreatic cancer; resistance; the hedgehog pathway
    DOI:  https://doi.org/10.3390/cells10082030
  11. J Gastrointest Cancer. 2021 Aug 25.
       PURPOSE: Colorectal cancer (CRC) is a main cause of morbidity and mortality in the world. Chemoradioresistance is a major problem in CRC treatment. Identification of novel therapeutic targets in order to overcome treatment resistance in CRC is necessary.
    METHODS: In this study, gene expression omnibus (GEO) database was searched to find microarray datasets. Data normalization/analyzing was performed using ExAtlas. The gene ontology (GO) and pathway enrichment analysis was performed using g:Profiler. Protein-protein interaction network (PPIN) was constructed by Search Tool for the Retrieval of Interacting Genes (STRING) and analyzed using Cytoscape. Survival analysis was done using Kaplan-Meier curve method.
    RESULTS: Forty-one eligible datasets were included in study. A total of 12,244 differentially expressed genes (DEGs) and 7337 unique DEGs were identified. Among them, 1187 DEGs were overlapped in ≥ 3 datasets. Fifty-five overlapped genes were considered as hub genes. Common hub genes in chemo/radiation/chemoradiation datasets were chosen as the essential candidate genes (n = 13). Forty-one hub gene and 7 essential candidate genes were contributed in the significant modules. The modules were mainly enriched in the signaling pathways of senescence, autophagy, NF-κB, HIF-1, stem cell pluripotency, notch, neovascularization, cell cycle, p53, chemokine, and PI3K-Akt. NGFR, FGF2, and PROM1 genes were significantly predictors of CRC patient's survival.
    CONCLUSION: Our study revealed three-gene signatures as potential therapeutic targets and also candidate molecular markers in CRC chemoradioresistance.
    Keywords:  Colorectal neoplasm; Drug resistance; Gene ontology; Microarray; Protein–protein interaction network; Radiosensitivity
    DOI:  https://doi.org/10.1007/s12029-021-00690-2
  12. Cancer Sci. 2021 Aug 27.
      Colorectal carcinoma (CRC) remains a huge challenge in clinical treatment due to tumor metastasis and recurrence. Stem cell-like colon tumor-repopulating cells (TRCs) are a subpopulation of cancer cells with highly tumorigenic and chemotherapy resistant properties. The core transcription factor c-Myc is essential for maintaining CSC phenotypes, yet its roles and regulatory mechanisms remain unclear in colon TRCs. Herein, we reported that elevated c-Myc protein supported formation and growth of TRC spheroids. The tumor suppressor DOC-2/DAB2 interactive protein (DAB2IP) suppressed c-Myc expression to inhibit TRC expansion and self-renewal. Particularly, DAB2IP disrupted c-Myc stability through glycogen synthase kinase 3β (GSK3β)/ protein phosphatase 2A-B56α (PP2A-B56α)-mediated phosphorylation and dephosphorylation cascade on c-Myc protein, thus leading to its eventual degradation via ubiquitin-proteasome pathway. The expression of DAB2IP was negatively correlated with c-Myc in CRC specimens. Overall, our results improved mechanistic insight into how DAB2IP suppressed TRC growth and self-renewal.
    Keywords:  Colorectal cancer; DAB2IP; Phosphorylation; Tumor-repopulating cells; c-Myc
    DOI:  https://doi.org/10.1111/cas.15120
  13. Future Oncol. 2021 Aug 27.
      The microbiome consists of all microbes present on and within the human body. An unbalanced, or 'dysbiotic' intestinal microbiome is associated with inflammatory bowel disease, diabetes and some cancer types. Drug treatment can alter the intestinal microbiome composition. Additionally, some chemotherapeutics interact with microbiome components, leading to changes in drug safety and/or efficacy. The intestinal microbiome is a modifiable target, using strategies such as antibiotic treatment, fecal microbial transplantation or probiotic administration. Understanding the impact of the microbiome on the safety and efficacy of cancer treatment may result in improved treatment outcome. The present review seeks to summarize relevant research and look to the future of cancer treatment, where the intestinal microbiome is recognized as an actionable treatment target.
    Keywords:  cancer; chemotherapy; drug efficacy; drug safety; microbiome; pharmacomicrobiomics; probiotics
    DOI:  https://doi.org/10.2217/fon-2021-0087
  14. PLoS One. 2021 ;16(8): e0256774
      Cross talk between different signaling pathways is thought to be important for regulation of homeostasis of, as well as oncogenesis of, the intestinal epithelium. Expression of an active form of K-Ras specifically in intestinal epithelial cells (IECs) of mice (IEC-RasDA mice) resulted in the development of hyperplasia in the small intestine and colon of mice. IEC-RasDA mice also manifested the increased proliferation of IECs. In addition, the number of goblet cells markedly increased, while that of Paneth cells decreased in IEC-RasDA mice. Development of intestinal organoids was markedly enhanced for IEC-RasDA mice compared with control mice. Whereas, the expression of Wnt target genes was significantly reduced in the in intestinal crypts from IEC-RasDA mice compared with that apparent for the control. Our results thus suggest that K-Ras promotes the proliferation of IECs as well as generation of goblet cells. By contrast, Ras counter-regulates the Wnt signaling and thereby contribute to the proper regulation of intestinal epithelial cell homeostasis.
    DOI:  https://doi.org/10.1371/journal.pone.0256774
  15. Cancer Lett. 2021 Aug 19. pii: S0304-3835(21)00409-2. [Epub ahead of print]
      Bcl2-associated athanogene 4 (BAG4) has been found to be aberrantly expressed in several types of human cancers. However, little is known about its expression, role, and clinical significance in gastric cancer (GC). In this study, we aimed to address these issues and to explore the underlying mechanisms. The expression level of BAG4, measured by immunohistochemistry, was significantly higher in GC tissues than in paired normal tissues. Elevated BAG4 expression was positively correlated with T stage, lymph node metastasis, and tumor size of GC and was associated with unfavorable outcomes of the patients. The overexpression of BAG4 promoted the in vitro invasion and in vivo metastasis of GC cells, and opposite results were observed after silencing of BAG4. Silencing of BAG4 significantly reduced the phosphorylation of PI3K, AKT, and p65, whereas overexpression of BAG4 markedly enhanced the phosphorylation of these molecules. At the same time, manipulating BAG4 expression resulted in the corresponding changes in p65 nuclear translocation and ZEB1 expression. Luciferase reporter and chromatin immunoprecipitation assays verified that p65 binds to the promoter of ZEB1 to upregulate its transcription. Our results demonstrate that BAG4 plays an oncogenic role in the invasion and metastasis of GC cells by activating the PI3K/AKT/NF-κB/ZEB1 axis to induce epithelial-mesenchymal transition.
    Keywords:  BAG4; Gastric cancer; Invasion; Metastasis; PI3K/AKT/NF-κB signaling
    DOI:  https://doi.org/10.1016/j.canlet.2021.08.020
  16. Cell. 2021 Aug 24. pii: S0092-8674(21)00945-4. [Epub ahead of print]
      Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.
    Keywords:  MSI; MSS; anti-tumor immunity; cell-cell interactions; colorectal cancer; mismatch repair-deficient; mismatch repair-proficient; scRNA-seq; spatial; tumor atlas
    DOI:  https://doi.org/10.1016/j.cell.2021.08.003
  17. Am J Physiol Gastrointest Liver Physiol. 2021 08 25.
      Knowledge of the development and hierarchical organization of tissues is key to understanding how they are perturbed in injury and disease, as well as how they may be therapeutically manipulated to restore homeostasis. The rapidly regenerating intestinal epithelium harbors diverse cell types and their lineage relationships have been studied using numerous approaches, from classical label-retaining and genetic lineage tracing methods to novel transcriptome-based annotations. Here, we describe the developmental trajectories that dictate differentiation and lineage specification in the intestinal epithelium. We focus on the most recent single-cell RNA-sequencing (scRNA-seq)-based strategies for understanding intestinal epithelial cell lineage relationships, underscoring how they have refined our view of the development of this tissue and highlighting their advantages and limitations. We emphasize how these technologies have been applied to understand the dynamics of intestinal epithelial cells in homeostatic and injury-induced regeneration models.
    Keywords:  differentiation; intestinal epithelium; intestinal stem cells; lineage hierarchy; single-cell RNA-sequencing
    DOI:  https://doi.org/10.1152/ajpgi.00188.2021
  18. J Cell Physiol. 2021 Aug 25.
      Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell-intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell-based strategies for clinical therapeutic applications, especially when other approaches fail.
    Keywords:  bone marrow; central nervous system; heart; skeletal muscle; skin; stem cell niches; tissue homeostasis
    DOI:  https://doi.org/10.1002/jcp.30562