Cell Mol Gastroenterol Hepatol. 2021 Sep 21. pii: S2352-345X(21)00194-6. [Epub ahead of print]
BACKGROUND & AIMS: Intestinal stem cells (ISCs) are sensitive to dietary alterations and nutrient availability. Neurotensin (NT), a gut peptide localized predominantly to the small bowel and released by fat ingestion, stimulates the growth of intestinal mucosa under basal conditions and during periods of nutrient deprivation, suggesting a possible role for NT on ISC function.
METHODS: Lgr5-EGFP, NT wild type (Nt+/+) and Lgr5-EGFP, NT knockout (Nt-/-) mice were fed ad libitum (AL) or fasted for 48 h. Small intestine tissue and crypts were examined by gene expression analyses, fluorescence-activated cell sorting, western blot, immunohistochemistry, and crypt-derived organoid culture. Drosophila expressing NT in midgut enteroendocrine cells were fed a standard diet or low-energy diet and esg-GFP+ ISCs quantified via immunofluorescence.
RESULTS: Loss of NT impaired crypt cell proliferation and ISC function in a manner dependent on nutrient status. Under nutrient-rich conditions, NT stimulated ERK1/2 signaling and the expression of genes that promote cell cycle progression, leading to crypt cell proliferation. Under conditions of nutrient depletion, NT stimulated WNT/®-catenin signaling and promoted an ISC gene signature, leading to enhanced ISC function. NT was required for the induction of WNT/®-catenin signaling and ISC-specific gene expression during nutrient depletion, and loss of NT reduced crypt cell proliferation and impaired ISC function and Lgr5 expression in the intestine during fasting. Conversely, the expression of NT in midgut enteroendocrine cells of Drosophila prevented loss of ISCs during nutrient depletion.
CONCLUSION: Collectively, our findings establish an evolutionarily conserved role for NT in ISC maintenance during nutritional stress.
Keywords: Drosophila; Neurotensin; diet; intestinal stem cells