bims-instec Biomed News
on Intestinal stem cells and chemoresistance in colon cancer and intestinal regeneration
Issue of 2022–06–05
nine papers selected by
Maria-Virginia Giolito, IRFAC/UMR-S1113 INSERM



  1. Anat Rec (Hoboken). 2022 Jun 01.
      Intestinal cell stemness, proliferation and differentiation are complex processes all occurring in distinct compartments of the crypt that need to be closely regulated to ensure proper epithelial renewal. The involvement of the Hippo pathway in intestinal epithelial proliferation and regeneration after injury via the regulation of its effectors YAP1 and TAZ has been well-documented over the last decade. The implication of YAP1 and TAZ on intestinal epithelial cell differentiation is less clear. Using intestinal cell models in which the expression of YAP1 and TAZ can be modulated, our group showed that YAP1 inhibits differentiation of the two main intestinal epithelial cell types, goblet and absorptive cells through a specific mechanism involving the repression of prodifferentiation transcription factor CDX2 expression. Further analysis provided evidence that the repressive effect of YAP1 on intestinal differentiation is mediated by regulation of the Hippo pathway by Src family kinase activity. Interestingly, the TAZ paralog does not seem to be involved in this process, which provides another example of the lack of perfect complementarity of the two main Hippo effectors.
    Keywords:  Hippo pathway; TAZ; YAP1; differentiation; epithelium; intestine
    DOI:  https://doi.org/10.1002/ar.24996
  2. J Exp Clin Cancer Res. 2022 Jun 02. 41(1): 184
       BACKGROUND: Epidermal growth factor receptor (EGFR) inhibitors, including cetuximab and panitumumab, are valuable therapeutics for colorectal cancer (CRC), but resistance to these inhibitors is common. The reason for such resistance is not well understood, which hampers development of better therapeutic strategies. Although activating mutations in KRAS, BRAF and PIK3CA are considered major drivers of CRC resistance to EGFR inhibitors, therapeutic targeting of these drug resistance drivers has not produced substantial clinical benefit.
    METHODS: We exploited cell lines and mouse tumor models (cell line xenografts and patient derived xenografts) for experiments of genetic and pharmacologic depletion of EGFR and/or its family member HER2, including EGFR mutants, inhibition of EGFR ligand shedding, and biochemical analysis of signaling proteins, to delineate the mechanism of CRC resistance to EGFR inhibitors and to assess the therapeutic activity of PEPDG278D, which is a recombinant human protein that induces the degradation of both EGFR and HER2.
    RESULTS: The sensitivity of CRC cells to cetuximab and panitumumab correlates with the ability of these drugs to induce EGFR downregulation. PEPDG278D strongly inhibits oncogenic signaling and growth of CRC cells by causing profound depletion of EGFR and HER2, regardless of activating mutations of KRAS, BRAF and PIK3CA. siRNA knockdown of EGFR or HER2 also inhibits CRC cells resistant to EGFR inhibitors. Tumors harboring mutated KRAS, BRAF and/or PIK3CA also overexpress EGFR ligands, further suggesting that EGFR signaling remains important to the tumors. While excessive tumor-generated high-affinity EGFR ligands block target engagement by PEPDG278D, aderbasib, an inhibitor of ADAM10 and ADAM17, enables PEPDG278D to exert strong antitumor activity by inhibiting ligand shedding. Moreover, adding fluorouracil, which is commonly used in CRC treatment, to the combination of PEPDG278D and aderbasib further enhances tumor inhibition.
    CONCLUSIONS: Our study shows that CRC resistance to EGFR inhibitors results primarily from the inability of the inhibitors to downregulate their target and that a PEPDG278D-based combination treatment overcomes the resistance.
    Keywords:  Aderbasib; Cetuximab; Colorectal cancer; EGFR; HER2; PEPDG278D; Panitumumab; Therapeutic resistance
    DOI:  https://doi.org/10.1186/s13046-022-02389-z
  3. BMC Cancer. 2022 Jun 02. 22(1): 602
      Mucin 3A (MUC3A) is overexpressed in colorectal cancer (CRC) and associated with poor prognosis, but the related mechanism remains unclear. Our study found that MUC3A promotes the progression of CRC by activating the PI3K/Akt/mTOR signaling pathway. Knockout of MUC3A significantly inhibited the proliferation of CRC cells and induced G1 phase arrest by upregulating p21 protein, an important cell cycle regulator. Moreover, knockout of MUC3A significantly inhibited invasion ability and enhanced the sensitivity to the chemotherapeutic agent 5-FU. Furthermore, we found that knockout of MUC3A repressed the PI3K/Akt/mTOR pathway through RNA-seq. Treatment with the PI3K/Akt/mTOR pathway inhibitor rapamycin successfully eliminated the difference in proliferation, invasion and chemoresistance between MUC3A knockout cells and control cells. Our study suggests that MUC3A is a potential oncogene that promotes the proliferation, invasion, and chemotherapy resistance of CRC. Moreover, CRC patients with high expression of MUC3A may benefit from rapamycin treatment.
    Keywords:  Akt; Cancer progression; Cell cycle; Colorectal cancer; MUC3A; PI3K; mTOR pathway
    DOI:  https://doi.org/10.1186/s12885-022-09709-8
  4. Cell Death Dis. 2022 May 28. 13(5): 505
      The use of PARP inhibitors in combination with radiotherapy is a promising strategy to locally enhance DNA damage in tumors. Loss of XRCC2 compromises DNA damage repairs, and induced DNA damage burdens may increase the reliance on PARP-dependent DNA repairs of cancer cells to render cell susceptibility to PARP inhibitor therapy. Here we tested the hypothesis that XRCC2 loss sensitizes colorectal cancer (CRC) to PARP inhibitor in combination with radiotherapy (RT). We show that high levels of XRCC2 or PARP1 in LARC patients were significantly associated with poor overall survival (OS). Co-expression analyses found that low levels of PARP1 and XRCC2 were associated with better OS. Our in vitro experiments indicated that olaparib+IR led to reduced clonogenic survival, more DNA damage, and longer durations of cell cycle arrest and senescence in XRCC2-deficient cells relative to wild-type cells. Furthermore, our mouse xenograft experiments indicated that RT + olaparib had greater anti-tumor effects and led to long-term remission in mice with XRCC2-deficient tumors. These findings suggest that XRCC2-deficient CRC acquires high sensitivity to PARP inhibition after IR treatment and supports the clinical development for the use of olaparib as a radiosensitizer for treatment of XRCC2-deficient CRC.
    DOI:  https://doi.org/10.1038/s41419-022-04967-7
  5. J Clin Oncol. 2022 Jun 01. JCO2102541
      BRAF-mutated advanced colorectal cancer is a relatively small but critical subset of this tumor type on the basis of prognostic and predictive implications. BRAF alterations in colorectal cancer are classified into three functional categories on the basis of signaling mechanisms, with the class I BRAFV600E mutation occurring most frequently in colorectal cancer. Functional categorization of BRAF mutations in colorectal cancer demonstrates distinct mitogen-activated protein kinase pathway signaling. On the basis of recent clinical trials, current standard-of-care therapies for patients with BRAFV600E-mutated metastatic colorectal cancer include first-line cytotoxic chemotherapy plus bevacizumab and subsequent therapy with the BRAF inhibitor encorafenib and antiepidermal growth factor receptor antibody cetuximab. Treatment regimens currently under exploration in BRAFV600E-mutant metastatic colorectal cancer include combinatorial options of various pathway-targeted therapies, cytotoxic chemotherapy, and/or immune checkpoint blockade, among others. Circumvention of adaptive and acquired resistance to BRAF-targeted therapies is a significant challenge to be overcome in BRAF-mutated advanced colorectal cancer.
    DOI:  https://doi.org/10.1200/JCO.21.02541
  6. Adv Sci (Weinh). 2022 Jun 02. e2201539
      Pre-existing drug resistance and tumorigenicity of cancer cells are highly correlated with therapeutic failure and tumor growth. However, current cancer models are limited in their application to the study of intratumor functional heterogeneity in personalized oncology. Here, an innovative two-dimensional (2D) and three-dimensional (3D) model for patient-derived cancer cells (PDCCs) and air-liquid interface (ALI) organotypic culture is established from colorectal cancer (CRC). The PDCCs recapitulate the genomic landscape of their parental tumors with high efficiency, high proliferation rate, and long-term stability, while corresponding ALI organotypic cultures retain histological architecture of their original tumors. Interestingly, both 2D and 3D models maintain the transcriptomic profile of the corresponding primary tumors and display the same trend in response to 5-Fluoruracil, regardless of their difference in gene expression profiles. Furthermore, single-cell-derived clones() are efficiently established and pre-existing drug-resistant clones and highly tumorigenic clones within individual CRC tumors are identified. It is found that tumorigenic cancer cells do not necessarily possess the stem cells characteristics in gene expression. This study provides valuable platform and resource for exploring the molecular mechanisms underlying the pre-existing drug resistance and tumorigenicity in cancer cells, as well as for developing therapeutic targets specifically for pre-existing drug-resistant or highly tumorigenic clones.
    Keywords:  colorectal cancer; organoids; preclinical model; tumor heterogeneity
    DOI:  https://doi.org/10.1002/advs.202201539
  7. Clin Exp Pharmacol Physiol. 2022 May 30.
      Dysfunction of the protein methyltransferase SET and MYND domain-containing protein 2 (SMYD2) is frequently linked to multiple diseases including cancer. The study focused on the role of SMYD2 in colorectal cancer (CRC) development. SMYD2 was expressed at high levels in CRC tissues and cells. Knockdown of SMYD2 in LOVO cells reduced cell proliferation, migration and invasiveness in vitro and it suppressed xenograft tumorigenesis in vivo. Overexpression of SMYD2 in HCT116 cells led to inverse trends. Mex-3 RNA binding family member A (MEX3A) was predicted as a target of SMYD2. ChIP-qPCR and cellular assays were performed and validated that SMYD2 activated MEX3A expression by promoting H3K36me2 modification on its promoter. Data in the STRING bioinformatics system indicated caudal type homeobox 2 (CDX2) as an important MEX3A-related gene. Silencing of MEX3A alone blocked proliferation and growth of CRC cells in vitro and in vivo, whereas MEX3A overexpression promoted cell growth by suppressing CDX2. In rescue experiments, MEX3A silencing suppressed the cell growth augmented by SMYD2, and CDX2 downregulation restored the malignance of cancer cells inhibited by MEX3A silencing. Taken together, this study reports that SMYD2-mediated activation of MEX3A augments progression of CRC by suppressing CDX2.
    Keywords:  CDX2; Colorectal cancer; Histone methylation; MEX3A; SMYD2
    DOI:  https://doi.org/10.1111/1440-1681.13679
  8. Cell Regen. 2022 Jun 01. 11(1): 18
      
    Keywords:  Cell cycle; DDB1; Homeostasis; Intestine
    DOI:  https://doi.org/10.1186/s13619-022-00119-6
  9. Cell Mol Gastroenterol Hepatol. 2022 May 25. pii: S2352-345X(22)00080-7. [Epub ahead of print]
      Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.
    Keywords:  Adult Stem Cells; Assembloids; Embryonic and Induced Pluripotent Stem Cells; Hydrogels; In Vitro Models; Microfluidics; Organoids; Scaffolds
    DOI:  https://doi.org/10.1016/j.jcmgh.2022.04.012