Ann Transl Med. 2023 Feb 28. 11(4): 185
Background: Doctors have always been overwhelmed by tumor drug resistance because it is a major challenge in the clinical treatment of tumors. Cellular senescence has a strong relationship with the development of tumor drug resistance. Herein, we aimed to explore new regulatory factors involved in the aging process of colorectal cancer (CRC) cells and assess the effect of cellular senescence on CRC drug resistance.
Methods: Genes associated with cellular senescence for anticipating regulatory factors were first used, and the regulatory molecules of survival significance were then identified based on the results of public database analysis. The effects of E2F translation factor 1 (E2F1) on CRC cell viability, invasion, migration, and cellular senescence processes were assessed through 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-Ethynyl-2'-deoxyuridine (EdU), Transwell, scar repairining, β-galactosidase staining, and cell immunofluorescence assays, respectively. Overexpression or silencing plasmids were used for transfecting HCT116 or OXA-HCT116 to assess the effect of E2F1 on the senescence process and drug resistance in CRC cells.
Results: On combining the database analysis results with those of our studies, we found that E2F1 was a critical regulator of cellular senescence in CRC. In the in vitro experiments, the E2F1 overexpression significantly stimulated the proliferation, invasion, and migration of CRC cells and even reduced oxaliplatin-induced senescence, further enhancing their resistance to oxaliplatin. Conversely, the tumorigenesis of colorectal cancer was repressed after the suppression of E2F1. Furthermore, CRC cells, which were otherwise resistant to oxaliplatin, also showed senescent phenotypes.
Conclusions: Our results suggest that E2F1 suppresses the aging of CRC cells and tumor cells develop resistance to oxaliplatin through high E2F1 expression. Moreover, E2F1 may act as a possible target for oxaliplatin resistance studies.
Keywords: E2F translation factor 1; cellular senescence; chemoresistance; colorectal cancer; oxaliplatin