bims-iorami Biomed News
on Ionising Radiation and Mitochondria
Issue of 2023‒11‒19
two papers selected by
Chenxiao Yu, Soochow University



  1. JCI Insight. 2023 Nov 16. pii: e169868. [Epub ahead of print]
      Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by two orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
    Keywords:  Cancer; Metabolism; Mitochondria; Oncology
    DOI:  https://doi.org/10.1172/jci.insight.169868
  2. Cancer Lett. 2023 Nov 14. pii: S0304-3835(23)00434-2. [Epub ahead of print] 216483
      Cellular plasticity and immune escape are synergistic drivers of tumor colonization in metastatic organs. Activation of protease-activated receptor 2 (PAR2) signaling promotes metastasis of colorectal carcinoma (CRC). The role of PAR2 in regulating the immune microenvironment and cancer progression remains unclear. We demonstrated that the regulation of liver metastasis by PAR2 requires a competent immune system. PAR2 knockdown enhanced liver infiltration of activated CD8+ T cells prior to metastatic foci formation in an interferon receptor-dependent manner. PAR2 depletion increased interferon (IFN)-β production via the cGAS-STING and RIG1 pathways. PAR2 inhibition increased mitochondrial permeability and cytosolic accumulation of mitochondrial DNA, which was reversed by Bcl-xL expression. Strikingly, shRNA against PAR2 with an immune checkpoint blocker (ICB) acted synergistically to suppress liver metastasis. Analysis of single-cell sequence data and 24 paired samples confirmed the regulatory effect of PAR2 on the metastatic immune environment in human CRC. Therefore, PAR2 signaling is involved in stabilizing the mitochondrial membrane and regulating the immune microenvironment through IFN-β during liver metastasis in CRC. The synergistic effect of the PAR2 inhibitor and ICB provides a potential therapeutic strategy for metastatic CRC treatment.
    Keywords:  Colorectal cancer; Interferon; Metastasis; Mitochondria; Permeability transition pore
    DOI:  https://doi.org/10.1016/j.canlet.2023.216483