bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2022–09–04
ten papers selected by
the Vincenzo Ciminale lab, Istituto Oncologico Veneto



  1. Cancer Res. 2022 Sep 02. pii: CAN-22-1006. [Epub ahead of print]
      Targeting collateral deletion of housekeeping genes caused by the loss of tumor suppressor genes is a potential strategy to identify context-specific, molecular targeted therapies in cancer. In mammals, phosphatidylserine (PS) synthesis depends on two redundant phosphatidylserine synthetases, PTDSS1 and PTDSS2, and PTDSS2 is located at a tumor-suppressive locus, 11p15.5. Here, we sought to determine whether PTDSS2 loss would confer vulnerability to disruption of PTDSS1 function. PTDSS2 was lost in a wide range of cancer types, and PTDSS1 depletion specifically suppressed growth in PTDSS2-deficient cancer cell lines. Potent and selective PTDSS1 inhibitors were developed whose activity phenocopied the effect of PTDSS1 depletion, and in vivo treatment of PTDSS2-deleted tumors with these inhibitors led to tumor regression. Whole-transcriptome analysis revealed that inhibition of PTDSS1 in PTDSS2-depleted cells activated the endoplasmic reticulum (ER) stress response downstream of PS depletion. ER stress-mediated cell death induced by PTDSS1 inhibitors activated tumor immunity through the secretion of HMGB1 protein followed by activation of bone marrow-derived dendritic cells. PTDSS2 loss showed intratumoral heterogeneity in clinical samples, raising concerns about resistance to PTDSS1 inhibition. However, the PTDSS1 inhibitor effectively suppressed the growth of tumor containing both PTDSS2 wild-type and knockout cells in immunocompetent mice, showing potency for overcoming tumor heterogeneity by modulating the tumor immune microenvironment. Thus, these newly developed PTDSS1 inhibitors provide a therapeutic option for treating cancer with PTDSS2 loss, harnessing the synthetic lethality of PTDSS1/2.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-1006
  2. Acta Biomater. 2022 Aug 25. pii: S1742-7061(22)00521-9. [Epub ahead of print]
      As a first studied and generally accepted programmed cell death regulator, Bcl-2 has been identified to overexpress in many types of cancer promoting tumor proliferation and progression. Herein, inspired by drug self-delivery systems, a self-assembled nanomedicine (designated as GosCe) was designed based on the hydrophobic interaction between chlorin e6 (Ce6) and gossypol (Gos). Without extra carriers, GosCe exhibited high drug loading rates, favorable size distribution, and a long-term stability at aqueous phase. More importantly, GosCe could be internalized by tumor cells more effectively than free Ce6, which brought about its multiple toxicity. Upon intravenous injection, GosCe preferred to accumulate in tumor site through enhanced permeability and retention (EPR) effect. After cellular internalization, Gos contributed to increasing the lethality of Ce6-guided photodynamic therapy (PDT) by down-regulating Bcl-2 protein expression and inducing endoplasmic reticulum (ER) stress. Both in vitro and in vivo investigations indicated that the Gos-assisted PDT greatly inhibit cell proliferation and tumor growth. This study might shed light on developing carrier free nanomedicine for PDT-based synergistic tumor therapy. STATEMENT OF SIGNIFICANCE: Metabolic abnormalities of tumor cells create defensive microenvironments which induce a therapeutic resistance against photodynamic therapy (PDT). Among which, the upregulated B-cell lymphoma (Bcl-2) in tumors could inhibit the PDT-induced cell apoptosis. In this work, a self-delivery nanomedicine (GosCe) was developed based on a Bcl-2 inhibitor and photosensitizer through intermolecular interactions, which had favorable size distribution, high drug contents and improved drug delivery efficiency. Importantly, GosCe increased the PDT efficacy by Bcl-2 inhibition and endoplasmic reticulum stress elevation. Thus, GosCe greatly inhibited the tumor growth while caused a reduced side effect in vivo. This carrier free nanomedicine with tumor microenvironment regulation would advance the development of photodynamic nanoplatform in tumor treatment.
    Keywords:  Anti-apoptosis; Carrier free; Endoplasmic reticulum stress; Nanomedicine; Photodynamic therapy
    DOI:  https://doi.org/10.1016/j.actbio.2022.08.045
  3. Oncoimmunology. 2022 ;11(1): 2116844
      IRE1α is one of the three ER transmembrane transducers of the Unfolded Protein Response (UPR) activated under endoplasmic reticulum (ER) stress. IRE1α activation has a dual role in cancer as it may be either pro- or anti-tumoral depending on the studied models. Here, we describe the discovery that exogenous expression of IRE1α, resulting in IRE1α auto-activation, did not affect cancer cell proliferation in vitro but resulted in a tumor-suppressive phenotype in syngeneic immunocompetent mice. We found that exogenous expression of IRE1α in murine colorectal and Lewis lung carcinoma cells impaired tumor growth when syngeneic tumor cells were subcutaneously implanted in immunocompetent mice but not in immunodeficient mice. Mechanistically, the in vivo tumor-suppressive effect of overexpressing IRE1α in tumor cells was associated with IRE1α RNAse activity driving both XBP1 mRNA splicing and regulated IRE1-dependent decay of RNA (RIDD). We showed that the tumor-suppressive phenotype upon IRE1α overexpression was characterized by the induction of apoptosis in tumor cells along with an enhanced adaptive anti-cancer immunosurveillance. Hence, our work indicates that IRE1α overexpression and/or activation in tumor cells can limit tumor growth in immunocompetent mice. This finding might point toward the need of adjusting the use of IRE1α inhibitors in cancer treatments based on the predominant outcome of the RNAse activity of IRE1α.
    Keywords:  Cancer; IRE1α; RIDD; UPR; XBP1s; anti-cancer immunosurveillance; apoptosis
    DOI:  https://doi.org/10.1080/2162402X.2022.2116844
  4. Cell. 2022 Sep 01. pii: S0092-8674(22)00978-3. [Epub ahead of print]185(18): 3356-3374.e22
      Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.
    Keywords:  ATF4; Bcl-2 family; GPX4; HRI; ferroptosis; persister integrated stress response
    DOI:  https://doi.org/10.1016/j.cell.2022.07.025
  5. Front Biosci (Landmark Ed). 2022 Aug 15. 27(8): 243
       BACKGROUND: Metabolic activities of tumor cells lead to a depletion of nutrients within the tumor microenvironment, which results in the dysfunction of infiltrating T cells. Here, we explored how glutamine (gln) metabolism, which is essential for biosynthesis and cellular function, can affect the functions of cytotoxic T lymphocytes (CTLs).
    METHODS: Activated CTLs were co-cultured with hepatoma cells. Western blot was used to analyze changes of proteins and ELISA was used to analyze changes of effector. RNA-sequencing was used to detect differentially expressed genes in CTLs. The status of the endoplasmic reticulum (ER) was investigated using transmission electron microscopy experiments.
    RESULTS: Co-culturing CTLs and hepatoma cells revealed that CTLL-2 cells in the co-culture group expressed high levels of PD-1 (Programmed cell death protein 1), TIM-3 (T cell immunoglobulin and mucin domain-containing protein-3), GRP78 (Glucose regulated protein 78), and P-PERK (phosphorylated protein kinase RNA-activated-like endoplasmic reticulum kinase) and secreted low levels of Granzyme B and perforin. Additionally, the substructure of the ER was severely damaged. When CTLs were treated with an inhibitor of ER stress, their functions were restored. Next, complete medium without Gln was used to culture cells, causing CTLs to display dysfunction and ER stress. WB results revealed decreased expression levels of GLS2 and SLC1A5 (Solute carrier family 1 member 5) in CTLs in the co-culture group. Subsequently, glutaminase (GLS) inhibitors were added to the cultures. As expected, CTLs treated with a GLS2 inhibitor had increased protein content of PD-1 and TIM-3, decreased secretion of Granzyme B and perforin, and an enhanced ER stress response.
    CONCLUSIONS: In summary, CTLs are functionally downregulated induced by hepatoma cells through the Gln-GLS2-ERS pathway.
    Keywords:  CTLs; GLS2; dysfunction; endoplasmic reticulum stress; glutamine
    DOI:  https://doi.org/10.31083/j.fbl2708243
  6. J Enzyme Inhib Med Chem. 2022 Dec;37(1): 2357-2369
      Curcumin is a natural medicine with a wide range of anti-tumour activities. However, due to β-diketone moiety, curcumin exhibits poor stability and pharmacokinetics which significantly limits its clinical applications. In this article, two types of dicarbonyl curcumin analogues with improved stability were designed through the calculation of molecular stability by density functional theory. Twenty compounds were synthesised, and their anti-tumour activity was screened. A plurality of analogues had significantly stronger activity than curcumin. In particular, compound B2 ((2E,2'E)-3,3'-(1,4-phenylene)bis(1-(2-chlorophenyl)prop-2-en-1-one)) exhibited excellent anti-lung cancer activity in vivo and in vitro. In addition, B2 could upregulate the level of reactive oxygen species in lung cancer cells, which in turn activated the endoplasmic reticulum stress and led to cell apoptosis and pyroptosis. Taken together, curcumin analogue B2 is expected to be a novel candidate for lung cancer treatment with improved chemical and biological characteristics.
    Keywords:  Dicarbonyl curcumin analogues; anti-lung cancer activity; density functional theory; pyroptosis; stability
    DOI:  https://doi.org/10.1080/14756366.2022.2116015
  7. Cancer Sci. 2022 Sep 01.
      Osteosarcoma is the most prevalent form of primary bone malignancy affecting adolescents. SAR1A is a key regulator of endoplasmic reticulum (ER) homeostasis, but its role as a regulator of osteosarcoma metastasis has yet to be clarified. Bioinformatics analyses revealed SAR1A and RHOA to be upregulated in osteosarcoma patients, with the upregulation of these genes being associated with poor 5-year metastasis-free survival rates. In addition, the upregulation of SAR1A and RHOA in osteosarcoma was highly positively correlated. Immunohistochemical analyses additionally revealed that SAR1A levels were increased in osteosarcoma pulmonary metastases. In vitro wound healing and Transwell assays indicated that knocking down SAR1A or RHOA impaired the invasive and migratory activity of osteosarcoma cells, whereas RHOA overexpression had the opposite effect. Western blotting and immunofluorescent staining revealed the inhibition of osteosarcoma cell epithelial-mesenchymal transition following SAR1A or RHOA knockdown, RHOA overexpression had the opposite effect. Following SAR1A knockdown, phalloidin staining indicated that osteosarcoma cells exhibited reduced lamellipodia formation. ER stress levels and reactive oxygen species (ROS) production were enhanced following the knockdown of SAR1A, as was autophagic activity, with lung metastases being reduced in vivo after such knockdown. Knocking down SAR1A suppresses osteosarcoma cell metastasis via the RhoA/YAP, ER stress, and autophagic pathways, offering new insights into the regulation of autophagic activity in the context of osteosarcoma cell metastasis and suggesting that these pathways may be amenable to therapeutic intervention.
    Keywords:  ER stress; RhoA/YAP; SAR1A; autophagy; metastasis
    DOI:  https://doi.org/10.1111/cas.15551
  8. Leukemia. 2022 Aug 30.
      Activation-induced cytidine deaminase (AID) has been implicated as both a positive and a negative factor in the progression of B cell chronic lymphocytic leukemia (CLL), but the role that it plays in the development and progression of this disease is still unclear. We generated an AID knockout CLL mouse model, AID-/-/Eμ-TCL1, and found that these mice die significantly earlier than their AID-proficient counterparts. AID-deficient CLL cells exhibit a higher ER stress response compared to Eμ-TCL1 controls, particularly through activation of the IRE1/XBP1s pathway. The increased production of secretory IgM in AID-deficient CLL cells contributes to their elevated expression levels of XBP1s, while secretory IgM-deficient CLL cells express less XBP1s. This increase in XBP1s in turn leads AID-deficient CLL cells to exhibit higher levels of B cell receptor signaling, supporting leukemic growth and survival. Further, AID-/-/Eμ-TCL1 CLL cells downregulate the tumor suppressive SMAD1/S1PR2 pathway and have altered homing to non-lymphoid organs. Notably, CLL cells from patients with IgHV-unmutated disease express higher levels of XBP1s mRNA compared to those from patients with IgHV-mutated CLL. Our studies thus reveal novel mechanisms by which the loss of AID leads to worsened CLL and may explain why unmutated CLL is more aggressive than mutated CLL.
    DOI:  https://doi.org/10.1038/s41375-022-01663-5
  9. Nat Cell Biol. 2022 Sep 01.
      Tumour dependency on specific metabolic signals has been demonstrated and often guided numerous therapeutic approaches. We identify melanoma addiction to the mitochondrial protein glutaryl-CoA dehydrogenase (GCDH), which functions in lysine metabolism and controls protein glutarylation. GCDH knockdown induced cell death programmes in melanoma cells, an activity blocked by inhibition of the upstream lysine catabolism enzyme DHTKD1. The transcription factor NRF2 mediates GCDH-dependent melanoma cell death programmes. Mechanistically, GCDH knockdown induces NRF2 glutarylation, increasing its stability and DNA binding activity, with a concomitant transcriptional upregulation of ATF4, ATF3, DDIT3 and CHAC1, resulting in cell death. In vivo, inducible inactivation of GCDH effectively inhibited melanoma tumour growth. Correspondingly, reduced GCDH expression correlated with improved survival of patients with melanoma. These findings identify melanoma cell addiction to GCDH, limiting apoptotic signalling by controlling NRF2 glutarylation. Inhibiting the GCDH pathway could thus represent a therapeutic approach to treat melanoma.
    DOI:  https://doi.org/10.1038/s41556-022-00985-x
  10. J Hematol Oncol. 2022 Aug 29. 15(1): 122
       BACKGROUND: Circular RNAs (circRNAs) represent a novel type of regulatory RNA characterized by high evolutionary conservation and stability. CircRNAs are expected to be potential diagnostic biomarkers and therapeutic targets for a variety of malignancies. However, the regulatory functions and underlying mechanisms of circRNAs in triple-negative breast cancer (TNBC) are largely unknown.
    METHODS: By using RNA high-throughput sequencing technology, qRT-PCR and in situ hybridization assays, we screened dysregulated circRNAs in breast cancer and TNBC tissues. Then in vitro assays, animal models and patient-derived organoids (PDOs) were utilized to explore the roles of the candidate circRNA in TNBC. To investigate the underlying mechanisms, RNA pull-down, RNA immunoprecipitation (RIP), co immunoprecipitation (co-IP) and Western blotting assays were carried out.
    RESULTS: In this study, we demonstrated that circRNA-CREIT was aberrantly downregulated in doxorubicin resistant triple-negative breast cancer (TNBC) cells and associated with a poor prognosis. The RNA binding protein DHX9 was responsible for the reduction in circRNA-CREIT by interacting with the flanking inverted repeat Alu (IRAlu) sequences and inhibiting back-splicing. By utilizing in vitro assays, animal models and patient-derived organoids, we revealed that circRNA-CREIT overexpression significantly enhanced the doxorubicin sensitivity of TNBC cells. Mechanistically, circRNA-CREIT acted as a scaffold to facilitate the interaction between PKR and the E3 ligase HACE1 and promoted proteasomal degradation of PKR protein via K48-linked polyubiquitylation. A reduced PKR/eIF2α signaling axis was identified as a critical downstream effector of circRNA-CREIT, which attenuated the assembly of stress granules (SGs) to activate the RACK1/MTK1 apoptosis signaling pathway. Further investigations revealed that a combination of the SG inhibitor ISRIB and doxorubicin synergistically inhibited TNBC tumor growth. Besides, circRNA-CREIT could be packaged into exosomes and disseminate doxorubicin sensitivity among TNBC cells.
    CONCLUSIONS: Our study demonstrated that targeting circRNA-CREIT and SGs could serve as promising therapeutic strategies against TNBC chemoresistance.
    Keywords:  Chemoresistance; CircRNA-CREIT; Stress granules; TNBC
    DOI:  https://doi.org/10.1186/s13045-022-01345-w