bims-kracam Biomed News
on K-Ras in cancer metabolism
Issue of 2021–06–20
forty papers selected by
Yasmin Elkabani, Egyptian Foundation for Research and Community Development



  1. Pharmacol Res. 2021 Jun 10. pii: S1043-6618(21)00312-1. [Epub ahead of print] 105728
      Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.
    Keywords:  Astragalus polysaccharide (PubChem CID: 2782115); Atractylenolide I (PubChem CID: 5321018); Berberine (PubChem CID: 2353); Brutieridin (PubChem CID: 101485561); Bufalin (PubChem CID: 9547215); Carnosic acid (PubChem CID: 65126); Celastrol (PubChem CID: 122724); Chlorogenic acid (PubChem CID: 1794427); Chrysin (PubChem CID: 5281607); DT-13 (PubChem CID: 101514160); Desmethoxycurcumin (PubChem CID: 5469424); Dioscin (PubChem CID: 119245); Emodin (PubChem CID: 3200); Euxanthone (PubChem CID: 5281631); L42 (PubChem CID: 5288052); Licochalcone A (PubChem CID: 5318998); MAP30 (PubChem CID: 451600); Matrine (PubChem CID: 91466); Melitidin (PubChem CID: 101485562); Melittin (PubChem CID: 16133648); Oleanolic acid (PubChem CID: 10494); Oridonin (PubChem CID: 5321010); Osthole (PubChem CID: 10228); Physapubescin I (PubChem CID: 132529929); Polyphyllin Ⅵ (PubChem CID: 10417550); Protopanaxadiol (PubChem CID: 9920281); Quercetin (PubChem CID: 5280343); Resibufogenin (PubChem CID: 6917974); Rhein (PubChem CID: 10168); Scutellarin (PubChem CID: 185617) Astragaloside IV (PubChem CID: 13943297); Shikonin (PubChem CID: 479503); Tanshinone IIA (PubChem CID: 164676); Tetrandrine (PubChem CID: 73708); amino acid metabolism; cancer cell metabolic reprogramming; glycolysis; lipid metabolism; traditional Chinese medicine
    DOI:  https://doi.org/10.1016/j.phrs.2021.105728
  2. J Agric Food Chem. 2021 Jun 16.
      The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
    Keywords:  Warburg effect; cancer metabolism; cancer therapy; growth signaling; metabolic reprogramming; phytocompounds
    DOI:  https://doi.org/10.1021/acs.jafc.1c01173
  3. Biomed Res Int. 2021 ;2021 5514669
      Pyruvate kinase (PK), a key enzyme that determines glycolytic activity, has been known to support the metabolic phenotype of tumor cells, and specific pyruvate kinase isoform M2 (PKM2) has been reported to fulfill divergent biosynthetic and energetic requirements of cancerous cells. PKM2 is overexpressed in several cancer types and is an emerging drug target for cancer during recent years. Therefore, this study was carried out to identify PKM2 inhibitors from natural products for cancer treatment. Based on the objectives of this study, firstly, plant extract library was established. In order to purify protein for the establishment of enzymatic assay system, pET-28a-HmPKM2 plasmid was transformed to E. coli BL21 (DE3) cells for protein expression and purification. After the validation of enzymatic assay system, plant extract library was screened for the identification of inhibitors of PKM2 protein. Out of 51 plant extracts screened, four extracts Mangifera indica (leaf, seed, and bark) and Bombex ceiba bark extracts were found to be inhibitors of PKM2. In the current study, M. indica (leaf, seed, and bark) extracts were further evaluated dose dependently against PKM2. These extracts showed different degrees of concentration-dependent inhibition against PKM2 at 90-360 μg/ml concentrations. We have also investigated the anticancer potential of these extracts against MDA-MB231 cells and generated dose-response curves for the evaluation of IC50 values. M. indica (bark and seed) extracts significantly halted the growth of MDA-MB231 cells with IC50 values of 108 μg/ml and 33 μg/ml, respectively. Literature-based phytochemical analysis of M. indica was carried out, and M. indica-derived 94 compounds were docked against three binding sites of PKM2 for the identification of PKM2 inhibitors. The results of in silico based screening have unveiled various PKM2 modulators; however, further studies are recommended to validate their PKM2 inhibitory potential via in vitro biochemical assay. The results of this study provide novel findings for possible mechanism of action of M. indica (bark and seed) extracts against TNBC via PKM2 inhibition suggesting that M. indica might be of therapeutic interest for the treatment of TNBC.
    DOI:  https://doi.org/10.1155/2021/5514669
  4. ACS Omega. 2021 Jun 08. 6(22): 14341-14360
      Traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. Qizhen decoction (QZD), a potential compound prescription of TCM, possesses multiple biological activities. It has been proven clinically effective in the treatment of colon cancer. However, the molecular mechanism of anticolon cancer activity is still not clear. This study aimed to identify the chemical composition of QZD. Furthermore, a collaborative analysis strategy of network pharmacology and cell biology was used to further explore the critical signaling pathway of QZD anticancer activity. First, ultraperformance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the chemical composition of QZD. Then, the chemical composition database of QZD was constructed based on a systematic literature search and review of chemical constituents. Moreover, the common and indirect targets of chemical components of QZD and colon cancer were searched by multiple databases. A protein-protein interaction (PPI) network was constructed using the String database (https://www.string-db.org/). All of the targets were analyzed by Gene Oncology (GO) bioanalysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the visual network topology diagram of "Prescription-TCM-Chemical composition-Direct target-Indirect target-Pathway" was constructed by Cytoscape software (v3.7.1). The top molecular pathway ranked by statistical significance was further verified by molecular biology methods. The results of UPLC-Q-TOF/MS showed that QZD had 111 kinds of chemical components, of which 103 were unique components and 8 were common components. Ten pivotal targets of QZD in the treatment of colon cancer were screened by the PPI network. Targets of QZD involve many biological processes, such as the signaling pathway, immune system, gene expression, and so on. QZD may interfere with biological pathways such as cell replication, oxygen-containing compounds, or organic matter by protein binding, regulation of signal receptors or enzyme binding, and affect cytoplasm and membrane-bound organelles. The main antitumor core pathways were the apoptosis metabolic pathway, the PI3K-Akt signal pathway, and so on. Expression of the PI3K-Akt signal pathway was significantly downregulated after the intervention of QZD, which was closely related to the inhibition of proliferation and migration of colon cancer cells by cell biology methods. The present work may facilitate a better understanding of the effective components, therapeutic targets, biological processes, and signaling pathways of QZD in the treatment of colon cancer and provide useful information about the utilization of QZD.
    DOI:  https://doi.org/10.1021/acsomega.1c01183
  5. Int J Nanomedicine. 2021 ;16 3907-3936
      Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.
    Keywords:  antitumor drugs; cancer; mitochondria targeting; mitochondriopathies; theranostic nanoparticles
    DOI:  https://doi.org/10.2147/IJN.S303832
  6. Nanomicro Lett. 2021 Jan 04. 13(1): 31
       HIGHLIGHTS: aCD3/F/AN, anti-CD3e f(ab')2 fragment-modified and fenofibrate-encapsulated amphiphilic nanoparticle, reprogrammed mitochondrial lipid metabolism of T cells. aCD3/F/AN specifically activated T cells in glucose-deficient conditions mimicking tumor microenvironment, and exerted an effector killing effect against tumor cells. In vivo treatment with aCD3/F/AN increased T cell infiltration, cytokine production, and prevented tumor growth. We report the activation of anticancer effector functions of T cells through nanoparticle-induced lipid metabolic reprogramming. Fenofibrate was encapsulated in amphiphilic polygamma glutamic acid-based nanoparticles (F/ANs), and the surfaces of F/ANs were modified with an anti-CD3e f(ab')2 fragment, yielding aCD3/F/ANs. An in vitro study reveals enhanced delivery of aCD3/F/ANs to T cells compared with plain F/ANs. aCD3/F/AN-treated T cells exhibited clear mitochondrial cristae, a higher membrane potential, and a greater mitochondrial oxygen consumption rate under glucose-deficient conditions compared with T cells treated with other nanoparticle preparations. Peroxisome proliferator-activated receptor-α and downstream fatty acid metabolism-related genes are expressed to a greater extent in aCD3/F/AN-treated T cells. Activation of fatty acid metabolism by aCD3/F/ANs supports the proliferation of T cells in a glucose-deficient environment mimicking the tumor microenvironment. Real-time video recordings show that aCD3/F/AN-treated T cells exerted an effector killing effect against B16F10 melanoma cells. In vivo administration of aCD3/F/ANs can increase infiltration of T cells into tumor tissues. The treatment of tumor-bearing mice with aCD3/F/ANs enhances production of various cytokines in tumor tissues and prevented tumor growth. Our findings suggest the potential of nanotechnology-enabled reprogramming of lipid metabolism in T cells as a new modality of immunometabolic therapy.
    Keywords:  Fatty acid metabolism; Immunometabolic therapy; Metabolic reprogramming; Mitochondrial function; T cells
    DOI:  https://doi.org/10.1007/s40820-020-00555-6
  7. Adv Healthc Mater. 2021 Jun 13. e2100598
      Selenium (Se) is an essential element to human health that can be obtained in nature through several sources. In the human body, it is incorporated into selenocysteine, an amino acid used to synthesize several selenoproteins, which have an active center usually dependent on the presence of Se. Although Se shows several beneficial properties in human health, it has also a narrow therapeutic window, and therefore the excessive intake of inorganic and organic Se-based compounds often leads to toxicity. Nanoparticles based on Se (SeNPs) are less toxic than inorganic and organic Se. They are both biocompatible and capable of effectively delivering combinations of payloads to specific cells following their functionalization with active targeting ligands. Herein, the main origin of Se intake, its role on the human body, and its primary biomedical applications are revised. Particular focus will be given to the main therapeutic targets that are explored for SeNPs in cancer therapies, discussing the different functionalization methodologies used to improve SeNPs stability, while enabling the extensive delivery of drug-loaded SeNP to tumor sites, thus avoiding off-target effects.
    Keywords:  biomedicine; cancer; reactive oxidative species; selenium nanoparticles
    DOI:  https://doi.org/10.1002/adhm.202100598
  8. Bioorg Chem. 2021 Jun 03. pii: S0045-2068(21)00432-6. [Epub ahead of print]114 105055
      Cancer therapy targets specific metabolic pathways or a single gene. This may result in low therapeutic effects due to drug selectivity and drug resistance. Recent studies revealed that the mitochondrial membrane potential and transmembrane permeability of cancerous mitochondria are differed from normal mitochondria. Thus, chemotherapy targeting cancerous mitochondria could be an innovative and competent strategy for cancer therapy. Previously, our work with a novel group of mitochondria targeting small molecules presented promising inhibitory capability toward various cancer cell lines and suppressed adenosine triphosphate (ATP) generation. Therefore, it is critical to understand the anticancer effect and targeting mechanism of these small molecules. This study investigated the inhibitory activity of mitochondria targeting small molecules with human cervical cancer cells - HeLa to further explore their therapeutic potential. HeLa cells were exposed to 10 µM of synthesized compounds and presented elevation in intracellular reactive oxygen species (ROS) level, impaired mitochondrial membrane potential and upregulation of apoptosis as well as necrosis. In vivo, HeLa cell tumor-bearing BALB/c nude mice were treated with mitochondria targeting small molecules for 12 days consecutively. Throughout this chemotherapy study, no deleterious side effects nor the appearance of toxicity was observed. Furthermore, mitochondria targeting small molecules treated groups exhibited significant down-regulation with both tumor volume and tumor weight compared to the Doxorubicin (DOX) treated group. Thus, inhibition of mitochondrial ATP synthesis, activation of intracellular ROS production, down-regulation of mitochondrial membrane potential and upregulation of apoptosis and necrosis rates are the indications of cancer therapy. In this work, we examined the anticancer capability of four mitochondria targeting small molecules in vitro and in vivo, and demonstrated a novel therapeutic approach in cancer therapy with tremendous potential.
    Keywords:  Apoptosis; Mitochondria; Mitochondria-targeting compounds; Mitochondrial chemotherapy; Mitochondrial membrane potential; ROS
    DOI:  https://doi.org/10.1016/j.bioorg.2021.105055
  9. Free Radic Biol Med. 2021 Jun 12. pii: S0891-5849(21)00374-9. [Epub ahead of print]
      High-risk human papillomavirus (HR-HPV) are associated with the development of cervical, anus, vagina, vulva, penis, and oropharynx cancer. HR-HPV target and modify the function of different cell biomolecules such as glucose, aminoacids, lipids, among others. The latter induce cell proliferation, cell death evasion, and genomic instability resulting in cell transformation. Lipids are essential biomolecules in HR-HPV infection and cell vesicular trafficking. They are also critical in producing cellular energy, the epithelial-mesenchymal transition (EMT) process, and therapy resistance of HPV-related cancers. HPV proteins induce oxidative stress (OS), which in turn promotes lipid peroxidation and cell damage, resulting in cell death such as apoptosis, autophagy, and ferroptosis. HR-HPV-related cancer cells cope with OS and lipid peroxidation, preventing cell death; however, these cells are sensitized by OS, which could be used as a target for redox therapies to induce their elimination. This review focuses on the role of lipids in HR-HPV infection and HPV-related cancer development, maintenance, resistance to therapy, and the possible treatments associated with lipids. Furthermore, we emphasize the significant role of OS in lipid peroxidation to induce cell death through apoptosis, autophagy, and ferroptosis to eliminate HPV-related cancers.
    Keywords:  Lipid metabolism; apoptosis; cellular trafficking; epithelial-mesenchymal transition (EMT); ferroptosis autophagy; lipogenesis; reactive oxygen species (ROS); β-oxidation
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.06.009
  10. Biomed Pharmacother. 2021 Jun 10. pii: S0753-3322(21)00580-1. [Epub ahead of print]141 111798
      Hypoxia is a common phenomenon in most malignant tumors, especially in pancreatic cancer (PC). Hypoxia is the result of unlimited tumor growth and plays an active role in promoting tumor survival, progression, and invasion. As the part of the hypoxia microenvironment in PC is gradually clarified, hypoxia is becoming a key determinant and an important therapeutic target of pancreatic cancer. To adapt to the severe hypoxia environment, cells have changed their metabolic phenotypes to maintain their survival and proliferation. Enhanced glycolysis is the most prominent feature of cancer cells' metabolic reprogramming in response to hypoxia. It provides the energy source for hypoxic cancer cells (although it provides less than oxidative phosphorylation) and produces metabolites that can be absorbed and utilized by normoxic cancer cells. In addition, the uptake of glutamine and fatty acids by hypoxic cancer cells is also increased, which is also conducive to tumor progression. Their metabolites are pooled in the hexosamine biosynthesis pathway (HBP). As a nutrition sensor, HBP, in turn, can coordinate glucose and glutamine metabolism. Its end product, UDP-GlcNAc, is the substrate of protein post-translational modification (PTM) involved in various signaling pathways supporting tumor progression. Adaptive metabolic changes of cancer cells promote their survival and affect tumor immune cells in the tumor microenvironment (TME), which contributes to tumor immunosuppressive microenvironment and induces tumor immunotherapy resistance. Here, we summarize the hypoxic microenvironment, its effect on metabolic reprogramming, and its contribution to immunotherapy resistance in pancreatic cancer.
    Keywords:  Hypoxia; Immunosuppressive microenvironment; Metabolic reprogramming; Pancreatic cancer (PC)
    DOI:  https://doi.org/10.1016/j.biopha.2021.111798
  11. Front Oncol. 2021 ;11 684961
      Metabolic rewiring is considered as a primary feature of cancer. Malignant cells reprogram metabolism pathway in response to various intrinsic and extrinsic drawback to fuel cell survival and growth. Among the complex metabolic pathways, pyrimidine biosynthesis is conserved in all living organism and is necessary to maintain cellular fundamental function (i.e. DNA and RNA biosynthesis). A wealth of evidence has demonstrated that dysfunction of pyrimidine metabolism is closely related to cancer progression and numerous drugs targeting pyrimidine metabolism have been approved for multiple types of cancer. However, the non-negligible side effects and limited efficacy warrants a better strategy for negating pyrimidine metabolism in cancer. In recent years, increased studies have evidenced the interplay of oncogenic signaling and pyrimidine synthesis in tumorigenesis. Here, we review the recent conceptual advances on pyrimidine metabolism, especially dihydroorotate dehydrogenase (DHODH), in the framework of precision oncology medicine and prospect how this would guide the development of new drug precisely targeting the pyrimidine metabolism in cancer.
    Keywords:  dihydroorotate dehydrogenase; metabolic reprogram; precision medicine; pyrimidine inhibitor; pyrimidine metabolism
    DOI:  https://doi.org/10.3389/fonc.2021.684961
  12. Med Hypotheses. 2021 Jun 02. pii: S0306-9877(21)00139-0. [Epub ahead of print]153 110620
      Control of core cell metabolism is a key aspect of the evolutionary conflict between viruses and the host's defence mechanisms. From their side, the invading viruses press the accelerator on their host cell's glycolysis, fatty acid, and glutaminolytic metabolic processes among others. It is also well established that activation of innate immune system responses modulates facets of metabolism such as that of polyamine, cholesterol, tryptophan and many more. But what about glutamine, a proteogenic amino acid that is a crucial nutrient for multiple cellular biosynthetic processes? Although mammalian cells can normally synthesize glutamine de novo, it has been noted that infections with genetically and phylogenetically diverse viruses are followed by the acquisition of a dependency on supplies of exogenous glutamine i.e. "glutamine addiction". Here we present our novel hypothesis that glutamine metabolism is also a target of the innate immune system, possibly through the action of interferons, as part of the evolutionary conserved antiviral metabolic reprogramming.
    Keywords:  Cellular metabolism; Glutamine; Immune response; Viral infection
    DOI:  https://doi.org/10.1016/j.mehy.2021.110620
  13. Front Genet. 2021 ;12 619821
      Lung adenocarcinoma has entered into an era of immunotherapy with the development of immune checkpoint inhibitors (ICIs). The identification of immune subtype is crucial to prolonging survival in patients. The tumor microenvironment (TME) and metabolism have a profound impact on prognosis and therapy. The majority of previous studies focused on only one aspect, while both of them are essential to the understanding of tumorigenesis and development. We hypothesized that lung adenocarcinoma can be stratified into immune subgroups with alterations in the TME infiltration. We aimed to explore the "TME-Metabolism-Risk" patterns in each subtypes and the mechanism behind. Glycolysis and cholesterol were selected for the analysis of metabolic states based on the first half of the study. Bioinformatic analysis was performed to investigate the transcriptomic and clinical data integrated by three lung adenocarcinoma cohorts (GSE30219, GSE31210, GSE37745, N = 415). The results were validated in an independent cohort (GSE50081, N = 127). In total, 415 lung adenocarcinoma samples were integrated and analyzed. Four major immune subtypes were indentified using bioinformatic analysis. Subtype NC1, characterized by a high level of glycolysis, with extremely low microenvironment cell infiltration. Subtype NC2, characterized by the "Silence" and "Cholesterol biosynthesis Predominant" metabolic states, with a middle degree infiltration of microenvironment cell. Subtype NC3, characterized by the lack of "Cholesterol biosynthesis Predominant" metabolic state, with abundant microenvironment cell infiltration. Subtype NC4, characterized by "Mixed" metabolic state, with a relatively low microenvironment cell infiltration. Least absolute shrinkage and selection operator (LASSO) regression and multivariate analyses were performed to calculate the risk of each sample, and we attempted to find out the potential immune escape mechanism in different subtypes. The result revealed that the lack of immune cells infiltration might contribute to the immune escape in subtypes NC1 and NC4. NC3 was characterized by the high expression of immune checkpoint molecules and fibroblasts. NC2 had defects in activation of innate immune cells. There existed an obviously survival advantage in subtype NC2. Gene set enrichment analysis (GSEA) and Gene Ontology analysis indicated that the PI3K-AKT-mTOR, TGF-β, MYC-related pathways might be correlated with this phenomenon. In addition, some differentially expressed genes (DEGs) were indentified in subtype NC3, which might be potential targets for survival phenotype transformation.
    Keywords:  bioinformactics analysis; immune escape; lung adenocarcinoma; metabolism; molecular subtype; prognosis; tumor microenvironment
    DOI:  https://doi.org/10.3389/fgene.2021.619821
  14. Biochim Biophys Acta Mol Cell Res. 2021 Jun 11. pii: S0167-4889(21)00130-0. [Epub ahead of print] 119076
      Ovarian cancer is the most frequent cause of gynecologic malignancies associated death. Primary or acquired cisplatin resistance is frequently occurred during ovarian cancer therapy. Cancer stem cells (CSC) tend to form minimal residual disease after chemotherapy and are implicated in relapse. The ability of cancer cells to reprogram their metabolism has recently been related with maintenance of CSC and resistance to chemotherapies. The current study found that BAG5 expression was decreased in cisplatin-resistant ovarian cancer cells and clinical tissues. Our data demonstrated that BAG5 knockdown was implicated in metabolic reprogramming and maintenance of cancer stem cell (CSC)-like features of ovarian cancer cells via regulation of Rictor and subsequent mTORC2 signaling pathway. In addition, the current study demonstrated that Bcl6 upregulation was responsible for repression of BAG5 transactivation via recruitment on the BAG5 promoter in cisplatin-resistant ovarian cancer. The current study also demonstrated reverse correlations between BAG5 and Bcl6, BAG5 and Rictor in ovarian serous adenocarcinoma tissues. Collectively, the current study identified the implication of Bcl6/BAG5/Rictor-mTORC2 signaling pathway in metabolic reprograming and maintenance of CSC-like features in cisplatin-resistant ovarian cancer cells. Therefore, further studies on the mechanism underlying regulation of metabolic reprogramming and CSC-like characteristics of cisplatin-resistant ovarian cancer cells may contribute to the establishment of novel therapeutic strategy for cisplatin-resistance.
    Keywords:  BAG5; Bcl6; Metabolic reprogramming; Rictor
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119076
  15. Cancer Res. 2021 Jun 18. pii: canres.1392.2021. [Epub ahead of print]
      Tumor metabolism supports the energetic and biosynthetic needs of rapidly proliferating cancer cells and modifies intra- and intercellular signaling to enhance cancer cell invasion, metastasis, and immune evasion. Prostate cancer exhibits unique metabolism with high rates of de novo fatty acid synthesis driven by activation of the androgen receptor (AR). Increasing evidence suggests that activation of this pathway is functionally important to promote prostate cancer aggressiveness. However, the mechanisms by which fatty acid synthesis are beneficial to prostate cancer have not been well defined. In this Review, we summarize evidence indicating that fatty acid synthesis drives progression of prostate cancer. We also explore explanations for this phenomenon and discuss future directions for targeting this pathway for patient benefit.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-1392
  16. Int J Biol Sci. 2021 ;17(8): 1895-1908
      Ovarian cancer is a common cause of death among gynecological cancers. Although ovarian cancer initially responds to chemotherapy, frequent recurrence in patients remains a therapeutic challenge. Pyruvate kinase M2 (PKM2) plays a pivotal role in regulating cancer cell survival. However, its therapeutic role remains unclear. Here, we investigated the anticancer effects of compound 3K, a specific PKM2 inhibitor, on the regulation of autophagic and apoptotic pathways in SK-OV-3 (PKM2-overexpressing human ovarian adenocarcinoma cell line). The anticancer effect of compound 3K was examined using MTT and colony formation assays in SK-OV-3 cells. PKM2 expression was positively correlated with the severity of the tumor, and expression of pro-apoptotic proteins increased in SK-OV-3 cells following compound 3K treatment. Compound 3K induced AMPK activation, which was accompanied by mTOR inhibition. Additionally, this compound inhibited glycolysis, resulting in reduced proliferation of SK-OV-3 cells. Compound 3K treatment suppressed tumor progression in an in vivo xenograft model. Our findings suggest that the inhibition of PKM2 by compound 3K affected the Warburg effect and induced autophagic cell death. Therefore, use of specific PKM2 inhibitors to block the glycolytic pathway and target cancer cell metabolism represents a promising therapeutic approach for treating PKM2-overexpressing ovarian cancer.
    Keywords:  apoptosis; autophagy; compound 3K; ovarian cancer; pyruvate kinase M2
    DOI:  https://doi.org/10.7150/ijbs.59855
  17. FEBS Open Bio. 2021 Jun 17.
      Cancer cell dysregulations result in the abnormal regulation of cellular metabolic pathways. By simulating this metabolic reprogramming using constraint-based modeling approaches, oncogenes can be predicted, and this knowledge can be used in prognosis and treatment. We introduced a trilevel optimization problem describing metabolic reprogramming for inferring oncogenes. First, this study used RNA-Seq expression data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples and their healthy counterparts to reconstruct tissue-specific genome-scale metabolic models and subsequently build the flux distribution pattern that provided a measure for the oncogene inference optimization problem for determining tumorigenesis. The platform detected 45 genes for LUAD and 84 genes for LUSC that lead to tumorigenesis. A high level of differentially expressed genes was not an essential factor for determining tumorigenesis. The platform indicated that pyruvate kinase (PKM), a well-known oncogene with a low level of differential gene expression in LUAD and LUSC, had the highest fitness among the predicted oncogenes based on computation. By contrast, pyruvate kinase L/R (PKLR), an isozyme of PKM, had a high level of differential gene expression in both cancers. Phosphatidylserine synthase 1 (PTDSS1), an oncogene in LUAD, was inferred to have a low level of differential gene expression, and overexpression could significantly reduce survival probability. According to the factor analysis, PTDSS1 characteristics were close to those of the template, but they were unobvious in LUSC. Angiotensin converting enzyme 2 (ACE2) has recently garnered widespread interest as the SARS-CoV-2 virus receptor. Moreover, we determined that ACE2 is an oncogene of LUSC but not of LUAD. The platform developed in this study can identify oncogenes with low levels of differential expression and be used to identify potential therapeutic targets for cancer treatment.
    Keywords:  Cancer cell metabolism; Constraint-based modeling; Flux balance analysis; Tissue-specific metabolic models; Trilevel optimization
    DOI:  https://doi.org/10.1002/2211-5463.13231
  18. Cell Mol Life Sci. 2021 Jun 15.
      Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death due to its late diagnosis that removes the opportunity for surgery and metabolic plasticity that leads to resistance to chemotherapy. Metabolic reprogramming related to glucose, lipid, and amino acid metabolism in PDAC not only enables the cancer to thrive and survive under hypovascular, nutrient-poor and hypoxic microenvironments, but also confers chemoresistance, which contributes to the poor prognosis of PDAC. In this review, we systematically elucidate the mechanism of chemotherapy resistance and the relationship of metabolic programming features with resistance to anticancer drugs in PDAC. Targeting the critical enzymes and/or transporters involved in glucose, lipid, and amino acid metabolism may be a promising approach to overcome chemoresistance in PDAC. Consequently, regulating metabolism could be used as a strategy against PDAC and could improve the prognosis of PDAC.
    Keywords:  Chemotherapy; Glutamine; Glycolysis; Lipogenesis; Pancreatic cancer
    DOI:  https://doi.org/10.1007/s00018-021-03866-y
  19. Comput Struct Biotechnol J. 2021 ;19 3034-3041
      Human serine hydroxymethyltransferase (SHMT) regulates the serine-glycine one carbon metabolism and plays a role in cancer metabolic reprogramming. Two SHMT isozymes are acting in the cell: SHMT1 encoding the cytoplasmic isozyme, and SHMT2 encoding the mitochondrial one. Here we present a molecular model built on experimental data reporting the interaction between SHMT1 protein and SHMT2 mRNA, recently discovered in lung cancer cells. Using a stochastic dynamic model, we show that RNA moieties dynamically regulate serine and glycine concentration, shaping the system behaviour. For the first time we observe an active functional role of the RNA in the regulation of the serine-glycine metabolism and availability, which unravels a complex layer of regulation that cancer cells exploit to fine tune amino acids availability according to their metabolic needs. The quantitative model, complemented by an experimental validation in the lung adenocarcinoma cell line H1299, exploits RNA molecules as metabolic switches of the SHMT1 activity. Our results pave the way for the development of RNA-based molecules able to unbalance serine metabolism in cancer cells.
    Keywords:  Metabolic networks; RNA-binding protein; RNA-protein interactions; Serine/Glycine metabolism
    DOI:  https://doi.org/10.1016/j.csbj.2021.05.019
  20. Toxicol Res (Camb). 2021 May;10(3): 592-600
      Several surveillance studies have reported significantly high level of patulin (PAT), mycotoxin in fruit juices suggesting the possible exposure to human. In vitro studies have showed that PAT can alter the permeability, ion transport and modulates tight junction of intestine. In real scenario, human can be exposed with low levels of PAT for longer duration through different fruits and their products. Hence, keeping this possibility in view, we conducted a study where normal intestinal cells were exposed with non-toxic levels of PAT for longer duration and found that PAT exposure causes cancer-like properties in normal intestinal cells. It is a well-known fact that cancer cells rewired their metabolism for cell growth and survival and metabolites closely depict the phenotypic properties of cells. Here, metabolomic study was performed in the PAT transformed and passage matched non-transformed cells using 1H HRMAS NMR. We have identified 12 significantly up-regulated metabolites, which, interestingly, were majorly amino acids, suggesting that PAT-induced pre-cancerous cells are involved in acquirement of nutrients for high protein turn-over. Furthermore, pathway analysis of metabolomics data indicated that aminoacyl tRNA biosynthesis, D-glutamate metabolism, glyoxylate and dicarboxylate metabolism and nitrogen metabolism were majorly hampered in PAT-induced pre-cancerous properties in normal intestinal cells.
    Keywords:  intestinal epithelial cells; metabolomics; neoplastic changes; patulin
    DOI:  https://doi.org/10.1093/toxres/tfab023
  21. JCI Insight. 2021 Jun 17. pii: 138835. [Epub ahead of print]
      Cancer cells re-program cellular metabolism to maintain adequate nutrient pools to sustain proliferation. Moreover, autophagy is a regulated mechanism to breakdown dysfunctional cellular components and recycle cellular nutrients. However, the requirement for autophagy and the integration in cancer cell metabolism is not clear in colon cancer. Here we show a cell-autonomous dependency of autophagy for cell growth in colorectal cancer. Loss of epithelial autophagy inhibits tumor growth in both sporadic and colitis associated cancer models. Genetic and pharmacological inhibition of autophagy inhibits cell growth in colon cancer-derived cell lines and patient-derived enteroid models. Importantly, normal colon epithelium and patient-derived normal enteroid growth was not decreased following autophagy inhibition. To couple the role of autophagy to cellular metabolism, a cell culture screen in conjunction with metabolomic analysis was performed. We identified a critical role of autophagy to maintain mitochondrial metabolites for growth. Loss of mitochondrial recycling through inhibition of mitophagy hinders colon cancer cell growth. These findings have revealed a cell-autonomous role of autophagy that plays a critical role in regulating nutrient pools in vivo and in cell models and provides therapeutic targets for colon cancer.
    Keywords:  Colorectal cancer; Gastroenterology; Oncology
    DOI:  https://doi.org/10.1172/jci.insight.138835
  22. Heliyon. 2021 May;7(5): e07064
      Cancer cells are dependent on glutamine for their metabolism and growth. Despite being the most abundant amino acid in the blood, glutamine deprivation occurs in the core of the tumor rendering less access to glutamine to the nearby tumor cells. Tumor cells mostly use the glutamine for mitochondrial oxidative phosphorylation (OXPHOS) to produce energy and the ingredients of the biomass required for the highly proliferating and metastatic ovarian cancer cells. But there is a lack of reports on the regulation of glutamine starvation on metastatic behavior and epithelial to mesenchymal transition (EMT) of ovarian cancer cells. We found that glutamine starvation reduced the migration and invasion properties of the ovarian cancer cells, PA1 and SKOV3. The expression of the invasion-inducing proteins, like matrix metalloproteinases (MMP2 and MMP9), were downregulated upon glutamine starvation. MMP genes are mostly regulated by the ETS1 oncogenic transcription factor in invasive tumor cells. Here we demonstrated the significant involvement of ETS1 on EMT and invasion in glutamine-deprived cells. We have further shown that the regulation of ETS1 expression and nuclear localization upon glutamine starvation is controlled in a cell type-specific manner. In PA1 cells, glutamine-induced ETS1 over-expression is HIF1α-dependent, while in SKOV3, its translocation to the nucleus is regulated through the mTOR pathway. Considering all, our study suggests that glutamine plays a very significant role in migration and invasion in ovarian cancer cells and ETS1 plays a key role in inducing such oncogenic parameters.
    Keywords:  ETS1; Glutamine; MMP
    DOI:  https://doi.org/10.1016/j.heliyon.2021.e07064
  23. Leukemia. 2021 Jun 12.
      Leukemic stem cells (LSCs) can acquire non-mutational resistance following drug treatment leading to therapeutic failure and relapse. However, oncogene-independent mechanisms of drug persistence in LSCs are incompletely understood, which is the primary focus of this study. We integrated proteomics, transcriptomics, and metabolomics to determine the contribution of STAT3 in promoting metabolic changes in tyrosine kinase inhibitor (TKI) persistent chronic myeloid leukemia (CML) cells. Proteomic and transcriptional differences in TKI persistent CML cells revealed BCR-ABL-independent STAT3 activation in these cells. While knockout of STAT3 inhibited the CML cells from developing drug-persistence, inhibition of STAT3 using a small molecule inhibitor sensitized the persistent CML cells to TKI treatment. Interestingly, given the role of phosphorylated STAT3 as a transcription factor, it localized uniquely to genes regulating metabolic pathways in the TKI-persistent CML stem and progenitor cells. Subsequently, we observed that STAT3 dysregulated mitochondrial metabolism forcing the TKI-persistent CML cells to depend on glycolysis, unlike TKI-sensitive CML cells, which are more reliant on oxidative phosphorylation. Finally, targeting pyruvate kinase M2, a rate-limiting glycolytic enzyme, specifically eradicated the TKI-persistent CML cells. By exploring the role of STAT3 in altering metabolism, we provide critical insight into identifying potential therapeutic targets for eliminating TKI-persistent LSCs.
    DOI:  https://doi.org/10.1038/s41375-021-01315-0
  24. Trends Cancer. 2021 Jun 07. pii: S2405-8033(21)00104-7. [Epub ahead of print]
      Autophagy is a catabolic intracellular nutrient-scavenging pathway triggered by nutrient deprivation and stress that captures and degrades intracellular proteins and organelles in lysosomes. The breakdown products are then recycled into metabolic pathways to sustain survival. Organelle turnover by autophagy contributes to quality control and suppresses inflammation. Autophagy is upregulated in many cancers and supports their growth, survival, and malignancy in a tumor cell-autonomous fashion. Host autophagy also promotes tumor growth by maintaining a supply of essential nutrients and suppressing innate and adaptive antitumor immune responses. Autophagy is also upregulated in response to cancer therapy and confers treatment resistance. Thus, autophagy is a cancer vulnerability and its inhibition is under investigation as a novel therapeutic approach.
    Keywords:  T cells; autophagy; cancer; immune response; interferon; metabolism
    DOI:  https://doi.org/10.1016/j.trecan.2021.05.003
  25. Cancer Res. 2021 Jun 14.
      Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-2936
  26. Front Pharmacol. 2021 ;12 681223
      Ovarian and breast cancer are prevalent female malignancies with increasing occurrence incidence and metastasis, significantly affecting the health and life quality of women globally. Anesthetic lidocaine has presented anti-tumor activities in the experimental conditions. However, the effect of lidocaine on ovarian and breast cancer remains elusive. We identified the important function of lidocaine in enhancing ferroptosis and repressing progression of ovarian and breast cancer. Our data showed that lidocaine further repressed erastin-inhibited ovarian and breast cancer cell viabilities. The treatment of lidocaine induced accumulation of Fe2+, iron and lipid reactive oxygen species (ROS) in ovarian and breast cancer cells. The ovarian and breast cancer cell proliferation was suppressed while cell apoptosis was induced by lidocaine in vitro. Lidocaine attenuated invasion and migration of ovarian and breast cancer cells as well. Regarding the mechanism, we found that lidocaine downregulated solute carrier family 7 member 11 (SLC7A11) expression by enhancing microRNA-382-5p (miR-382-5p) in the cells. The inhibition of miR-382-5p blocked lidocaine-induced ferroptosis of ovarian and breast cancer cells. MiR-382-5p/SLC7A11 axis was involved in lidocaine-mediated inhibition of ovarian and breast cancer cell proliferation in vitro. The miR-382-5p expression was down-regulated but SLC7A11 expression was up-regulated in clinical ovarian and breast cancer samples. Furthermore, the treatment of lidocaine repressed tumor growth of ovarian cancer cells in vivo, in which the miR-382-5p expression was increased while SLC7A11 expression was decreased. Consequently, we concluded that the lidocaine promoted ferroptosis by miR-382-5p/SLC7A11 axis in ovarian and breast cancer cells. The clinical value of lidocaine in the treatment of ovarian and breast cancer deserves to be proved in detail.
    Keywords:  SLC7A11; breast cancer; ferroptosis; lidocaine; miR-382-5p; ovarian cancer
    DOI:  https://doi.org/10.3389/fphar.2021.681223
  27. Bioessays. 2021 Jun 14. e2100093
      Ferroptosis, a form of regulated cell death triggered by lipid hydroperoxide accumulation, has an important role in a variety of diseases and pathological conditions, such as cancer. Targeting ferroptosis is emerging as a promising means of therapeutic intervention in cancer treatment. Polyunsaturated fatty acids, reactive oxygen species, and labile iron constitute the major underlying triggers for ferroptosis. Other regulators of ferroptosis have also been discovered recently, among them the mechanistic target of rapamycin complex 1 (mTORC1), a central controller of cell growth and metabolism. Inhibitors of mTORC1 have been used in treating diverse diseases, including cancer. In this review, we discuss recent findings linking mTORC1 to ferroptosis, dissect mechanisms underlying the establishment of mTORC1 as a key ferroptosis modulator, and highlight the potential of co-targeting mTORC1 and ferroptosis in cancer treatment. This review will provide valuable insights for future investigations of ferroptosis and mTORC1 in fundamental biology and cancer therapy.
    Keywords:  GPX4; SLC7A11; autophagy; cancer therapy; ferroptosis; lipid peroxidation; mTOR; mTORC1; oncogene
    DOI:  https://doi.org/10.1002/bies.202100093
  28. Cell Metab. 2021 Jun 08. pii: S1550-4131(21)00233-3. [Epub ahead of print]
      Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches.
    Keywords:  acidosis; cancer; diacylglycerol acyltransferase; docosahexaenoic acid; fatty acids; ferroptosis; lipid droplets; peroxidation; polyunsaturated fatty acids; spheroids
    DOI:  https://doi.org/10.1016/j.cmet.2021.05.016
  29. Cold Spring Harb Perspect Med. 2021 Jun 14. pii: a037838. [Epub ahead of print]
      Lung cancer is a heterogeneous disease that is subdivided into histopathological subtypes with distinct behaviors. Each subtype is characterized by distinct features and molecular alterations that influence tumor metabolism. Alterations in tumor metabolism can be exploited by imaging modalities that use metabolite tracers for the detection and characterization of tumors. Microenvironmental factors, including nutrient and oxygen availability and the presence of stromal cells, are a critical influence on tumor metabolism. Recent technological advances facilitate the direct evaluation of metabolic alterations in patient tumors in this complex microenvironment. In addition, molecular alterations directly influence tumor cell metabolism and metabolic dependencies that influence response to therapy. Current therapeutic approaches to target tumor metabolism are currently being developed and translated into the clinic for patient therapy.
    DOI:  https://doi.org/10.1101/cshperspect.a037838
  30. Essays Biochem. 2021 Jun 16. pii: EBC20200165. [Epub ahead of print]
      The classification and treatment of breast cancer is largely defined by the expression of steroid hormone receptors (HRs), namely estrogen receptor (ER) and progesterone receptor (PR), and gene amplification/overexpression of human epidermal growth factor receptor 2 (HER2). More recently, studies of androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) have revealed that targeting these related HRs may be a promising strategy for a more personalized approach to the treatment of specific subtypes of HR+ breast cancer. For example, GR expression is associated with a good prognosis in ER+ breast cancer, but predicts poor prognosis in triple-negative breast cancer (TNBC). GR, like ER, PRs, and AR, is a ligand-activated transcription factor, but also has significant ligand-independent signaling activities. GR transcriptional activity is classically regulated by circulating glucocorticoids (GCs; ligand-dependent). Recent studies demonstrate that GR transcriptional activity is also regulated by a variety of cellular stress stimuli that input to GR Ser134 phosphorylation via rapid activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway (ligand-independent). Furthermore, ligand-independent GR activation promotes feedforward signaling loops that mediate sustained activation of stress signaling pathways to drive advanced cancer biology (i.e. migration, invasion, chemoresistance, survival, and cellular growth). In this review, we will focus on the role of GR as a key sensor and mediator of physiologic and tumor microenvironment (TME)-derived cellular stress signaling in TNBC and discuss how targeting GR and/or associated signaling pathways may provide a strategy to inhibit deadly TNBC progression.
    Keywords:  breast cancers; glucocorticoid receptor; stress signaling
    DOI:  https://doi.org/10.1042/EBC20200165
  31. Cell Rep. 2021 Jun 15. pii: S2211-1247(21)00597-0. [Epub ahead of print]35(11): 109238
      Metabolic adaptations and the signaling events that control them promote the survival of pancreatic ductal adenocarcinoma (PDAC) at the fibrotic tumor site, overcoming stresses associated with nutrient and oxygen deprivation. Recently, rewiring of NADPH production has been shown to play a key role in this process. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells. However, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). In this study, we show that oncogenic KRAS promotes protein kinase C (PKC)-mediated NADK phosphorylation, leading to its hyperactivation, thus sustaining both NADP+ and NADPH levels in PDAC cells. Together, our data show that increased NADK activity is an important adaptation driven by oncogenic signaling. Our findings indicate that NADK could serve as a much-needed therapeutic target for PDAC.
    Keywords:  KRAS; NADK; NADP+; NADPH; PDAC; PKC
    DOI:  https://doi.org/10.1016/j.celrep.2021.109238
  32. RNA Biol. 2021 Jun 10. 1-18
      Pancreatic cancer has the worst prognosis of all common cancers. Pancreatic cancer cells have a metabolic advantage due to their swiftly adaptive responses to hypoxic and low-nutrient medium. This advantage contributes to the aggressivity of pancreatic cancer. In this study, lncRNA MIR210HG was abnormally upregulated within pancreatic cancer. It acted as a key oncogenic regulator of pancreatic cancer aggressiveness and glycolysis. Knockdown of MIR210HG significantly inhibited the aggressive phenotype of pancreatic cancer cells and inhibited the growth of xenograft tumours. More importantly, MIR210HG knockdown inhibited pancreatic cancer cell glycolysis via regulating the glycolysis-related hexokinase 2 (HK2) and Pyruvate kinase muscle isozyme M2 (PKM2) expression. Compared with the MIR210HG knockdown group, miR-125b-5p inhibition promoted the aggressive phenotypes and glycolysis of pancreatic cancer cells. Furthermore, the effects of MIR210HG knockdown on HK2 and PKM2 expression, pancreatic cancer cell aggressive phenotypes, and glycolysis were significantly reversed by miR-125b-5p inhibition. In tissue samples, MIR210HG expression was negatively correlated with miR-125b-5p levels and positively correlated with HK2 and PKM2 expression. miR-125b-5p expression was negatively correlated with HK2 and PKM2 expression. In conclusion, MIR210HG affected the phenotypes of pancreatic cancer cells, including proliferation, invasion, migration, and glycolysis, via modulating the miR-125b-5p/HK2/PKM2 axis.
    Keywords:  HK2; PKM2; Pancreatic cancer; lncRNA MIR210HG; metabolic reprogramming; miR-125b-5p
    DOI:  https://doi.org/10.1080/15476286.2021.1930755
  33. Free Radic Biol Med. 2021 Jun 12. pii: S0891-5849(21)00375-0. [Epub ahead of print]
      Aerobic organisms possess numerous antioxidant enzymatic families, including catalases, superoxide dismutases (SODs), peroxiredoxins (PRDXs), and glutathione peroxidases (GPXs), which work cooperatively to protect cells from an excess of reactive oxygen species (ROS) derived from endogenous metabolism or external microenvironment. Catalase, as well as other antioxidant enzymes, plays an important dichotomous role in cancer. Therefore, therapies aimed at either reverting the increased or further escalating catalase levels could be effective, depending on the metabolic landscape and on the redox status of cancer cells. This dichotomous role of catalase in cancers highlights the importance to deepen comprehensively the role and the regulation of this crucial antioxidant enzyme. The present review highlights the role of catalase in cancer and provides a comprehensive description of the molecular mechanisms associated with the multiple levels of catalase regulation.
    Keywords:  Cancer; Catalase; Reactive oxygen species; gene expression regulation
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.06.010
  34. Atherosclerosis. 2021 May 28. pii: S0021-9150(21)00254-9. [Epub ahead of print]329 1-8
      Lipids released from circulating lipoproteins by intravascular action of lipoprotein lipase (LpL) reach parenchymal cells in tissues with a non-fenestrated endothelium by transfer through or around endothelial cells. The actions of LpL are controlled at multiple sites, its synthesis and release by myocytes and adipocytes, its transit and association with the endothelial cell luminal surface, and finally its activation and inhibition by a number of proteins and by its product non-esterified fatty acids. Multiple pathways mediate endothelial transit of lipids into muscle and adipose tissues. These include movement of fatty acids via the endothelial cell fatty acid transporter CD36 and movement of whole or partially LpL-hydrolyzed lipoproteins via other apical endothelial cell receptors such as SR-B1and Alk1. Lipids also likely change the barrier function of the endothelium and operation of the paracellular pathway around endothelial cells. This review summarizes in vitro and in vivo support for the key role of endothelial cells in delivery of lipids and highlights incompletely understood processes that are the focus of active investigation.
    Keywords:  CD36; Fatty acids; Lipoprotein lipase; Scavenger receptors; Triglyceride
    DOI:  https://doi.org/10.1016/j.atherosclerosis.2021.05.018
  35. Elife. 2021 Jun 16. pii: e63104. [Epub ahead of print]10
      Typified by oxidative phosphorylation (OXPHOS), mitochondria catalyze a wide variety of cellular processes seemingly critical for malignant growth. As such, there is considerable interest in targeting mitochondrial metabolism in cancer. However, notwithstanding the few drugs targeting mutant dehydrogenase activity, nearly all hopeful 'mito-therapeutics' cannot discriminate cancerous from non-cancerous OXPHOS and thus suffer from a limited therapeutic index. The present project was based on the premise that the development of efficacious mitochondrial-targeted anti-cancer compounds requires answering two fundamental questions: 1) is mitochondrial bioenergetics in fact different between cancer and non-cancer cells? and 2) If so, what are the underlying mechanisms? Such information is particularly critical for the subset of human cancers, including acute myeloid leukemia (AML), in which alterations in mitochondrial metabolism are implicated in various aspects of cancer biology (e.g., clonal expansion and chemoresistance). Herein, we leveraged an in-house diagnostic biochemical workflow to comprehensively evaluate mitochondrial bioenergetic efficiency and capacity in various hematological cell types, with a specific focus on OXPHOS dynamics in AML. Consistent with prior reports, clonal cell expansion, characteristic of leukemia, was universally associated with a hyper-metabolic phenotype which included increases in basal and maximal glycolytic and respiratory flux. However, despite having nearly 2-fold more mitochondria per cell, clonally expanding hematopoietic stem cells, leukemic blasts, as well as chemoresistant AML were all consistently hallmarked by intrinsic limitations in oxidative ATP synthesis (i.e., OXPHOS). Remarkably, by performing experiments across a physiological span of ATP free energy (i.e, ΔGATP), we provide direct evidence that, rather than contributing to cellular ΔGATP, leukemic mitochondria are particularly poised to consume ATP. Relevant to AML biology, acute restoration of OXPHOS kinetics proved highly cytotoxic to leukemic blasts, suggesting that active OXPHOS repression supports aggressive disease dissemination in AML. Taken together, these findings argue against ATP being the primary output of mitochondria in leukemia and provide proof-of-principle that restoring, rather than disrupting, OXPHOS and/or cellular ΔGATP in cancer may represent an untapped therapeutic avenue for combatting hematological malignancy and chemoresistance.
    Keywords:  biochemistry; cancer biology; chemical biology; human
    DOI:  https://doi.org/10.7554/eLife.63104
  36. Biol Reprod. 2021 Jun 16. pii: ioab118. [Epub ahead of print]
      Metabolites control epigenetic mechanisms and, conversly, cell metabolism is regulated at the epigenetic level in response to changes in the cellular environnement. In recent years, this metabolo-epigenetic control of gene expression has been implicated in the regulation of multiple stages of embryonic development. The developmental potency of stem cells and their embryonic counterparts is directly determined by metabolic rewiring. Here, we review the current knowledge on the interplay between epigenetics and metabolism in the specific context of early germ cells development. We further develop the implications of metabolic rewiring in primordial germ cells in light of their epigenetic remodelling during cell fate determination. Finally, we discuss the relevance of concerted metabolic and epigenetic regulation of primordial germ cells in the context of mammalian transgenerational epigenetic inheritance.
    Keywords:  Epigenetics; Metabolism; Primordial Germ Cells; alpha-ketoglutarate
    DOI:  https://doi.org/10.1093/biolre/ioab118
  37. Crit Rev Biochem Mol Biol. 2021 Jun 15. 1-10
      The serine/threonine kinase mammalian target of rapamycin (mTOR) is the catalytic subunit of two complexes, mTORC1 and mTORC2, which have common and distinct subunits that mediate separate and overlapping functions. mTORC1 is activated by plenty of nutrients, and the two complexes can be activated by PI3K signaling. mTORC2 acts as an upstream regulator of AKT, and mTORC1 acts as a downstream effector. mTOR signaling integrates both intracellular and extracellular signals, acting as a key regulator of cellular metabolism, growth, and survival. A dysregulated activation of mTOR, as result of PI3K pathway or mTOR regulatory protein mutations or even due to the presence of cellular or viral oncogenes, is a common finding in cancer and represents a central mechanism in cancerogenesis. In the final part of this review, we will focus on the PI3K/AKT/mTOR activation by the human gammaherpesviruses EBV and KSHV that hijack this pathway to promote their-mediated oncogenic transformation and pathologies.
    Keywords:  EBV; KSHV; PI3K/AKT; cancer; mTORC1; mTORC2; metabolism
    DOI:  https://doi.org/10.1080/10409238.2021.1934811
  38. FEBS Lett. 2021 Jun 14.
      Acetate overflow refers to the metabolism by which a large part of carbon incorporated as glucose into Escherichia coli cells is catabolized and excreted as acetate into the medium. We previously found that mutants for the acetate overflow pathway enzymes phosphoacetyltransferase (Pta) and acetate kinase (AckA) showed significant diauxic growth after glucose depletion in E. coli. Here, we analyzed the underlying mechanism in the pta mutant. Proteomic and other analyses revealed an increase of pyruvate dehydrogenase complex subunits and a decrease of glyoxylate shunt enzymes, which resulted from pyruvate accumulation. Since restoration of these enzyme levels by overexpressing PdhR (pyruvate-sensing transcription factor) or deleting iclR (gene encoding a pyruvate- and glyoxylate-sensing transcription factor) alleviated the growth lag of the pta mutant after glucose depletion, these changes were considered as the reason for the phenotype. Given the evidence for decreased coenzyme A (HS-CoA) levels in the pta mutant, the growth inhibition after glucose depletion was partly explained by limited availability of HS-CoA in the cell. The findings provide insights into the role of acetate overflow in metabolic regulation, which may be useful for biotechnological applications.
    Keywords:  2-oxoglutarate dehydrogenase; acetate overflow metabolism; coenzyme A; gluconeogenesis; glucose depletion; glycolysis; pyruvate dehydrogenase
    DOI:  https://doi.org/10.1002/1873-3468.14151
  39. Cell Biochem Funct. 2021 Jun 15.
      Energetically inefficient inter-organ substrate shuttles are proposed contributors to cachexia-related weight loss. Here, we examined glycolytic pathway metabolites, enzyme activity and transport proteins in skeletal muscle, liver and tumours of mice with cachexia-related weight loss induced by colon-26 cancer cells. Skeletal muscle of cachexic mice had increased [L-lactate]/[pyruvate], LDH activity and lactate transporter MCT1. Cachexic livers also showed increased MCT1. This is consistent with the proposal that the rate of muscle-derived lactate shuttling to liver for use in gluconeogenesis is increased, that is, an increased Cori cycle flux in weight-losing cachexic mice. A second shuttle between liver and tumour may also contribute to disrupted energy balance and weight loss. We found increased high-affinity glucose transporter GLUT1 in tumours, suggesting active glucose uptake, tumour MCT1 detection and decreased intratumour [L-lactate]/[pyruvate], implying increased lactate efflux and/or intratumour lactate oxidation. Last, high [L-lactate]/[pyruvate] and MCT1 in cachexic muscle provides a potential muscle-derived lactate supply for the tumour (a 'reverse Warburg effect'), supporting tumour growth and consequent cachexia. Our findings suggest several substrate shuttles among liver, skeletal muscle and tumour contribute to metabolic disruption and weight loss. Therapies that aim to normalize dysregulated substrate shuttling among energy-regulating tissues may alleviate unintended weight loss in cancer cachexia. SIGNIFICANCE OF THE STUDY: Cachexia is a serious complication of cancer characterized by severe weight loss, muscle atrophy and frailty. Cachexia occurs in roughly half of all cancer patients, and in up to 80% of patients with advanced disease. Cachexia independently worsens patient prognosis, lowers treatment efficacy, increases hospitalization cost and length of stay, and accounts for 20-30% of cancer-related deaths. There are no effective treatments. Our findings suggest several substrate shuttles among liver, skeletal muscle and tumour contribute to metabolic disruption and weight loss in cancer cachexia. Identifying therapies that normalize dysregulated substrate shuttling among energy-regulating tissues may protect against cachexia-related weight loss.
    Keywords:  Colon-26; Cori cycle; Warburg effect; energy metabolism; glucose transporter; lactate; monocarboxylate transporter
    DOI:  https://doi.org/10.1002/cbf.3652
  40. Trends Cancer. 2021 Jun 11. pii: S2405-8033(21)00106-0. [Epub ahead of print]
      Melanoma is derived from melanocytes located in multiple regions of the body. Cutaneous melanoma (CM) represents the major subgroup, but less-common subtypes including uveal melanoma (UM), mucosal melanoma (MM), and acral melanoma (AM) arise that have distinct genetic profiles. Treatments effective for CM are ineffective in UM, AM, and MM, and patient survival remains poor. As reprogrammed cancer metabolism is associated with tumorigenesis, the underlying mechanisms are well studied and provide therapeutic opportunities in many cancers; however, metabolism is less well studied in rarer melanoma subtypes. We summarize current knowledge of the metabolic alterations in rare melanoma and potential applications of targeting cancer metabolism to improve the therapeutic options available to UM, AM, and MM patients.
    Keywords:  acral; melanoma; metabolism; mucosal; uveal
    DOI:  https://doi.org/10.1016/j.trecan.2021.05.005