Mayo Clin Proc. 2020 Jun 19. pii: S0025-6196(19)31089-4. [Epub ahead of print]
With the advent of precision genomics, hereditary predisposition to hematopoietic neoplasms- collectively known as hereditary predisposition syndromes (HPS)-are being increasingly recognized in clinical practice. Familial clustering was first observed in patients with leukemia, which led to the identification of several germline variants, such as RUNX1, CEBPA, GATA2, ANKRD26, DDX41, and ETV6, among others, now established as HPS, with tendency to develop myeloid neoplasms. However, evidence for hereditary predisposition is also apparent in lymphoid and plasma--cell neoplasms, with recent discoveries of germline variants in genes such as IKZF1, SH2B3, PAX5 (familial acute lymphoblastic leukemia), and KDM1A/LSD1 (familial multiple myeloma). Specific inherited bone marrow failure syndromes-such as GATA2 haploinsufficiency syndromes, short telomere syndromes, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, severe congenital neutropenia, and familial thrombocytopenias-also have an increased predisposition to develop myeloid neoplasms, whereas inherited immune deficiency syndromes, such as ataxia-telangiectasia, Bloom syndrome, Wiskott Aldrich syndrome, and Bruton agammaglobulinemia, are associated with an increased risk for lymphoid neoplasms. Timely recognition of HPS is critical to ensure safe choice of donors and/or conditioning-regimen intensity for allogeneic hematopoietic stem-cell transplantation and to enable direction of appropriate genomics-driven personalized therapies. The purpose of this review is to provide a comprehensive overview of HPS and serve as a useful reference for clinicians to recognize relevant signs and symptoms among patients to enable timely screening and referrals to pursue germline assessment. In addition, we also discuss our institutional approach toward identification of HPS and offer a stepwise diagnostic and management algorithm.