bims-lifras Biomed News
on Li-Fraumeni syndrome
Issue of 2023–10–22
two papers selected by
Joanna Zawacka-Pankau, Karolinska Institutet



  1. Cureus. 2023 Sep;15(9): e45462
      Li-Fraumeni syndrome (LFS) is a rare inherited cancer susceptibility disorder with a wide tumour spectrum, particularly in children and young adults. Patients with LFS have life-long cancer risk, and the most commonly encountered tumours include soft tissue sarcoma, breast cancer, brain tumours, osteosarcoma, leukaemia and adrenocortical carcinoma. LFS is associated with mutations in the tumour suppressor gene TP53, andnearly two-thirds of families with LFS have this germline mutation. However, the diagnosis of LFS is currently based on recognised strict clinical criteria regardless of the genetic mutation status, as a few families with the clinical characteristics and cancer predisposition of LFS do not have TP53 mutations. Breast cancer is particularly significant among the common malignancies associated with LFS as it is the most common cancer in women worldwide. We present a case of a 27-year-old woman with unilateral breast cancer, in whom further history revealed a brain tumour at the age of 14 years. Due to the early onset of breast cancer and history of childhood malignancy, we suspected LFS. Genetic testing revealed a TP53 mutation, further suggesting the diagnosis of LFS. This has important implications in managing this patient's breast cancer, as the need for risk-reducing mastectomy and arranging a special surveillance programme. It also has great implications for the patient's family members, especially in terms of psychological impact, particularly when the mutation has been detected in children. Also, there is a need for periodic surveillance, which can help in early diagnosis and timely treatment with a more favourable outcome.
    Keywords:  brain pleomorphic xanthoastrocytoma; breast cancer; li-fraumeni syndrome; tp53 mutation; upfront chemotherapy
    DOI:  https://doi.org/10.7759/cureus.45462
  2. ESMO Open. 2023 Oct 16. pii: S2059-7029(23)01282-6. [Epub ahead of print]8(6): 102041
       BACKGROUND: The Belgian Precision initiative aims to maximize the implementation of tumor-agnostic next-generation sequencing in patients with advanced cancer and enhance access to molecularly guided treatment options. Academic tumor-agnostic basket phase II studies are part of this initiative. The current investigator-driven trial aimed to investigate the efficacy of olaparib in advanced cancers with a (likely) pathogenic mutation (germline or somatic) in a gene that plays a role in homologous recombination (HR).
    PATIENTS AND METHODS: This open-label, multi-cohort, phase II study examines the efficacy of olaparib in patients with an HR gene mutation in their tumor and disease progression on standard of care. Patients with a somatic or germline mutation in the same gene define a cohort. For each cohort, a Simon minimax two-stage design was used. If a response was observed in the first 13 patients, 14 additional patients were included. Here, we report the results on four completed cohorts: patients with a BRCA1, BRCA2, CHEK2 or ATM mutation.
    RESULTS: The overall objective response rate across different tumor types was 11% in the BRCA1-mutated (n = 27) and 21% in the BRCA2-mutated (n = 27) cohorts. Partial responses were seen in pancreatic cancer, gallbladder cancer, endocrine carcinoma of the pancreas and parathyroid cancer. One patient with a BRCA2 germline-mutated colon cancer has an ongoing complete response with 19+ months on treatment. Median progression-free survival in responding patients was 14+ months (5-34+ months). The clinical benefit rate was 63% in the BRCA1-mutated and 46% in the BRCA2-mutated cohorts. No clinical activity was observed in the ATM (n = 13) and CHEK2 (n = 14) cohorts.
    CONCLUSION: Olaparib showed efficacy in different cancer types harboring somatic or germline mutations in the BRCA1/2 genes but not in ATM and CHEK2. Patients with any cancer type harboring BRCA1/2 mutations should have access to olaparib.
    Keywords:  ATM; BRCA1; BRCA2; CHEK2; agnostic NGS; biliary tract cancer; colorectal cancer; olaparib; parathyroid cancer
    DOI:  https://doi.org/10.1016/j.esmoop.2023.102041