bims-limsir Biomed News
on Lipophilic modified siRNAs
Issue of 2023‒01‒01
two papers selected by
Ivan V. Chernikov
Institute of Сhemical Biology and Fundamental Medicine of the SB RAS


  1. 3 Biotech. 2023 Jan;13(1): 18
      Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
    Keywords:  Colorectal cancer; Interleukins; RNA interference; miRNA; siRNA
    DOI:  https://doi.org/10.1007/s13205-022-03421-x
  2. ACS Chem Biol. 2022 Dec 29.
      RNA interference (RNAi) is a well-established research tool and is also maturing as a novel therapeutic approach. For the latter, microRNA-like off-target activity of short interfering RNAs (siRNAs) remains as one of the main problems limiting RNAi drug development. In this communication, we report that replacement of a single internucleoside phosphodiester in the seed region (nucleotides 2 to 7) of the guide strand with an amide linkage suppressed the undesired microRNA-like off-target activity by at least an order of magnitude. For the specific siRNA targeting the PIK3CB gene, an amide modification between the third and fourth nucleotides of the guide strand showed the strongest enhancement of specificity (completely eliminated off-target silencing) while maintaining high on-target activity. These results are important because off-target activity is one of the main remaining roadblocks for RNA based drug development.
    DOI:  https://doi.org/10.1021/acschembio.2c00769