AIMS Microbiol. 2025 ;11(4):
946-962
Synthetic biology has revolutionized precision medicine by enabling the development of engineered bacteria as living therapeutics, dynamic biological systems capable of sensing, responding to, and functioning within complex physiological environments. These microbial platforms offer unprecedented adaptability, allowing for real-time detection of disease signals and targeted therapeutic delivery. This review explores recent innovations in microbial engineering across medical, industrial, environmental, and agricultural domains. Key advances include CRISPR-Cas systems, synthetic gene circuits, and modular plasmid architectures that provide fine-tuned control over microbial behavior and therapeutic output. The integration of computational modeling and machine learning has further accelerated design, optimization, and scalability. Despite these breakthroughs, challenges persist in maintaining genetic stability, ensuring biosafety, and achieving reproducibility in clinical and industrial settings. Ethical and regulatory frameworks are evolving to address dual-use concerns, public perception, and global policy disparities. Looking forward, the convergence of synthetic biology with nanotechnology, materials science, and personalized medicine is paving the way for intelligent, responsive, and sustainable solutions to global health and environmental challenges. Engineered bacteria are poised to become transformative tools not only in disease treatment but also in diagnostics, biomanufacturing, pollution mitigation, and sustainable agriculture.
Keywords: CRISPR-Cas systems; Engineered bacteria; living therapeutics; microbiome engineering; synthetic biology