bims-lycede Biomed News
on Lysosome-dependent cell death
Issue of 2024–06–23
three papers selected by
Sofía Peralta, Universidad Nacional de Cuyo



  1. Mol Neurobiol. 2024 Jun 18.
      Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
    Keywords:  CNS injury; Cathepsin; Inflammation; Lysosomal membrane permeabilization; Programmed cell death
    DOI:  https://doi.org/10.1007/s12035-024-04290-6
  2. Mol Biol Cell. 2024 Jun 18. mbcE23090344
      Maintenance of a pool of active lysosomes with acidic pH and degradative hydrolases is crucial for cell health. Abnormalities in lysosomal function are closely linked to diseases, such as lysosomal storage disorders (LSDs), neurodegeneration, intracellular infections, and cancer among others. Emerging body of research suggests the malfunction of lysosomal hydrolase trafficking pathway to be a common denominator of several disease pathologies. However, available conventional tools to assess lysosomal hydrolase trafficking are insufficient and fail to provide a comprehensive picture about the trafficking flux and location of lysosomal hydrolases. To address some of the shortcomings, we designed a genetically encoded fluorescent reporter containing a lysosomal hydrolase tandemly tagged with pH sensitive and insensitive fluorescent proteins, which can spatio-temporally trace the trafficking of lysosomal hydrolases. As a proof of principle, we demonstrate that the reporter can detect perturbations in hydrolase trafficking, that are induced by pharmacological manipulations and pathophysiological conditions like intracellular protein aggregates. This reporter can effectively serve as a probe for mapping the mechanistic intricacies of hydrolase trafficking pathway in health and disease and is a utilitarian tool to identify genetic and pharmacological modulators of this pathway, with potential therapeutic implications.
    DOI:  https://doi.org/10.1091/mbc.E23-09-0344
  3. Med Oncol. 2024 Jun 20. 41(7): 183
      Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
    Keywords:  Autophagosome; Autophagy; Cancer immunotherapy; Epithelial to mesenchymal transition; Metastatic-cascade; Tumor antigens; Tumor microenvironment; Tumorigenesis
    DOI:  https://doi.org/10.1007/s12032-024-02417-2