bims-lycede Biomed News
on Lysosome-dependent cell death
Issue of 2024–06–30
three papers selected by
Sofía Peralta, Universidad Nacional de Cuyo



  1. Cells. 2024 Jun 15. pii: 1041. [Epub ahead of print]13(12):
      Venetoclax and obinutuzumab are becoming frontline therapies for chronic lymphocytic leukemia (CLL) patients. Unfortunately, drug resistance still occurs, and the combination could be immunosuppressive. Lysosomes have previously been identified as a target for obinutuzumab cytotoxicity in CLL cells, but the mechanism remains unclear. In addition, studies have shown that lysosomotropic agents can cause synergistic cell death in vitro when combined with the BTK inhibitor, ibrutinib, in primary CLL cells. This indicates that targeting lysosomes could be a treatment strategy for CLL. In this study, we have shown that obinutuzumab induces lysosome membrane permeabilization (LMP) and cathepsin D release in CLL cells. Inhibition of cathepsins reduced obinutuzumab-induced cell death in CLL cells. We further determined that the lysosomotropic agent siramesine in combination with venetoclax increased cell death in primary CLL cells through an increase in reactive oxygen species (ROS) and cathepsin release. Siramesine treatment also induced synergistic cytotoxicity when combined with venetoclax. Microenvironmental factors IL4 and CD40L or incubation with HS-5 stromal cells failed to significantly protect CLL cells from siramesine- and venetoclax-induced apoptosis. We also found that siramesine treatment inhibited autophagy through reduced autolysosomes. Finally, the autophagy inhibitor chloroquine failed to further increase siramesine-induced cell death. Taken together, lysosome-targeting drugs could be an effective strategy in combination with venetoclax to overcome drug resistance in CLL.
    Keywords:  CLL; autophagy; cathepsins; cell death; lysosomes
    DOI:  https://doi.org/10.3390/cells13121041
  2. Chembiochem. 2024 Jun 25. e202400506
      Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.
    Keywords:  membrane protein genetically encoded calcium indicators (GECI) transient receptor potential (TRP) channels calcium channel lysosome
    DOI:  https://doi.org/10.1002/cbic.202400506
  3. Life Sci. 2024 Jun 25. pii: S0024-3205(24)00458-2. [Epub ahead of print] 122868
      Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
    Keywords:  Cancer; Endoplasmic reticulum; Gene expression; Glycosylation; Golgi apparatus
    DOI:  https://doi.org/10.1016/j.lfs.2024.122868