bims-lymeca Biomed News
on Lysosome metabolism in cancer
Issue of 2022–08–07
four papers selected by
Harilaos Filippakis, University of New England



  1. Nat Commun. 2022 Aug 02. 13(1): 4481
      Two-pore channels are endo-lysosomal cation channels with malleable selectivity filters that drive endocytic ion flux and membrane traffic. Here we show that TPC2 can differentially regulate its cation permeability when co-activated by its endogenous ligands, NAADP and PI(3,5)P2. Whereas NAADP rendered the channel Ca2+-permeable and PI(3,5)P2 rendered the channel Na+-selective, a combination of the two increased Ca2+ but not Na+ flux. Mechanistically, this was due to an increase in Ca2+ permeability independent of changes in ion selectivity. Functionally, we show that cell permeable NAADP and PI(3,5)P2 mimetics synergistically activate native TPC2 channels in live cells, globalizing cytosolic Ca2+ signals and regulating lysosomal pH and motility. Our data reveal that flux of different ions through the same pore can be independently controlled and identify TPC2 as a likely coincidence detector that optimizes lysosomal Ca2+ signaling.
    DOI:  https://doi.org/10.1038/s41467-022-31959-0
  2. Cell Death Dis. 2022 Aug 01. 13(8): 668
      Despite novel therapy regimens and extensive research, chemoresistance remains a challenge in leukemia treatment. Of note, recent studies revealed lysosomes as regulators of cell death and chemotherapy response, suggesting this organelle is a novel target for chemosensitization. Interestingly, drug-resistant VCR-R CEM acute lymphoblastic leukemia (ALL) cells have an increased expression of the lysosomal cation channel Two-Pore-Channel 2 (TPC2) compared to drug-naïve CCRF-CEM ALL cells. Concurrently, knockout (KO) of TPC2 sensitized drug-resistant VCR-R CEM cells to treatment with cytostatics. The chemosensitizing effect could be confirmed in several cell lines as well as in heterogeneous, patient-derived xenograft ALL cells, using the pharmacological TPC2 inhibitors naringenin and tetrandrine. We reveal that a dual mechanism of action mediates chemo sensitization by loss of lysosomal TPC2 function. First, because of increased lysosomal pH, lysosomal drug sequestration is impaired, leading to an increased nuclear accumulation of doxorubicin and hence increased DNA damage. Second, lysosomes of TPC2 KO cells are more prone to lysosomal damage as a result of morphological changes and dysregulation of proteins influencing lysosomal stability. This leads to induction of lysosomal cell death (LCD), evident by increased cathepsin B levels in the cytosol, truncation of pro-apoptotic Bid, as well as the reversibility of cell death by co-treatment with the cathepsin B inhibitor CA-074Me in TPC2 KO cells. In summary, this study establishes TPC2 as a novel, promising, druggable target for combination therapy approaches in ALL to overcome chemoresistance, which could be exploited in the clinic in the future. Additionally, it unravels LCD signaling as an important death-inducing component upon loss of TPC2 function.
    DOI:  https://doi.org/10.1038/s41419-022-05105-z
  3. Toxicol Lett. 2022 Jul 29. pii: S0378-4274(22)00969-9. [Epub ahead of print]367 76-87
      Antipsychotic drugs represent a class of lysosomotropic drugs widely used in clinical practice. However, the hepatotoxicity of these drugs has been reported in recent years. Therefore, understanding the changes in cellular homeostasis mediated by these drugs is of great significance for revealing the true mechanisms underlying hepatotoxicity. Perphenazine is a classical antipsychotic drug that can reportedly induce extrapyramidal and sympatholytic side effects. The present research focuses on the toxicity effect of perphenazine on normal human hepatocytes. To assess the hepatotoxicity of continuous administration of perphenazine and investigate potential mechanisms related to apoptosis, human normal L02 hepatocytes were exposed to 10-40 μM perphenazine in vitro. The results showed that perphenazine inhibited cell viability in a concentration and time-dependent manner. Furthermore, 30 μM perphenazine induced intense lysosome vacuolation, impaired lysosomal membrane, and induced lysosomal membrane permeabilization (LMP), ultimately triggering lysosomal cell death in L02 cells. Knockdown cathepsin D(CTSD) also ameliorated perphenazine-induced liver injury via the inhibition of LMP. In vivo, ICR mice received intragastric administration of 10-180 mg/kg B.W. perphenazine every other day for 21 days. 180 mg/kg perphenazine significantly increased histological injury and aminotransferases compared with control. Taken together, our findings suggest that perphenazine can trigger hepatotoxicity through lysosome disruption both in vitro and in vivo.
    Keywords:  Apoptosis; LMP; Liver injury; Lysosome; Perphenazine
    DOI:  https://doi.org/10.1016/j.toxlet.2022.07.814
  4. Front Oncol. 2022 ;12 906014
      Fumarate hydratase (FH) - deficient renal cell carcinoma (FHdRCC) is a rare aggressive subtype of RCC caused by a germline or sporadic loss-of-function mutation in the FH gene. Here, we summarize how FH deficiency results in the accumulation of fumarate, which in turn leads to activation of hypoxia-inducible factor (HIF) through inhibition of prolyl hydroxylases. HIF promotes tumorigenesis by orchestrating a metabolic switch to glycolysis even under normoxia, a phenomenon well-known as the Warburg effect. HIF activates the transcription of many genes, including vascular endothelial growth factor (VEGF). Crosstalk between HIF and epidermal growth factor receptor (EGFR) has also been described as a tumor-promoting mechanism. In this review we discuss therapeutic options for FHdRCC with a focus on anti-angiogenesis and EGFR-blockade. We also address potential targets that arise within the metabolic escape routes taken by FH-deficient cells for cell growth and survival.
    Keywords:  bevacizumab; erlotinib; fumarate hydratase; fumarate hydratase deficient renal cell carcinoma; glucose; hereditary leiomyomatosis and renal cell cancer; metabolism; renal cell carcinoma (RCC)
    DOI:  https://doi.org/10.3389/fonc.2022.906014