bims-lymeca Biomed News
on Lysosome metabolism in cancer
Issue of 2023‒01‒01
seven papers selected by
Harilaos Filippakis
University of New England


  1. Cell Death Discov. 2022 Dec 29. 8(1): 502
      Lysosomes are single-membraned organelles that mediate the intracellular degradation of macromolecules. Various stress can induce lysosomal membrane permeabilization (LMP), translocating intralysosomal components, such as cathepsins, to the cytoplasm, which induces lysosomal-dependent cell death (LDCD). This study reports that p53 regulates LMP in response to DNA-damaging drugs. Treating wild-type TP53 A549 cells with DNA-damaging drugs (namely, doxorubicin, carboplatin, and etoposide) induced LMP and accelerated cell death more rapidly than treating TP53-knockout (KO) A549 cells. This suggested p53-dependent LMP and LDCD induction in response to DNA damage. LMP was induced by p53-dependent BID upregulation and activation, followed by translocation of truncated BID to lysosomes. Simultaneously, autophagy for damaged lysosome elimination (lysophagy) was activated via the p53-mTOR-TEFB/TFE3 pathways in response to DNA damage. These data suggested the dichotomous nature of p53 for LMP regulation; LMP induction and repression via the p53-BID axis and p53-mTOR-TFEB/TFE3 pathway, respectively. Blocking autophagy with hydroxychloroquine or azithromycin as well as ATG5 KO enhanced LMP and LDCD induction after exposure to DNA-damaging drugs. Furthermore, lysosomal membrane stabilization using U18666A, a cholesterol transporter Niemann-Pick disease C1 (NPC1) inhibitor, suppressed LMP as well as LDCD in wild-type TP53, but not in TP53-KO, A549 cells. Thus, LMP is finely regulated by TP53 after exposure to DNA-damaging drugs.
    DOI:  https://doi.org/10.1038/s41420-022-01293-x
  2. Nucleic Acid Ther. 2022 Dec 19.
      Phosphorothioate (PS)-modified antisense oligonucleotide (ASO) drugs enter cells through endocytic pathways where a majority are entrapped within membrane-bound endosomes and lysosomes, representing a limiting step for antisense activity. While late endosomes have been identified as a major site for productive PS-ASO release, how lysosomes regulate PS-ASO activity beyond macromolecule degradation remains not fully understood. In this study, we reported that SID1 transmembrane family, member 2 (SIDT2), a lysosome transmembrane protein, can robustly regulate PS-ASO activity. We showed that SIDT2 is required for the proper colocalization between PS-ASO and lysosomes, suggesting an important role of SIDT2 in the entrapment of PS-ASOs in lysosomes. Mechanistically, we revealed that SIDT2 regulates lysosome cellular location. Lysosome location is largely determined by its movement along microtubules. Interestingly, we also observed an enrichment of proteins involved in microtubule function among SIDT2-binding proteins, suggesting that SIDT2 regulates lysosome location via its interaction with microtubule-related proteins. Overall, our data suggest that lysosome protein SIDT2 inhibits PS-ASO activity potentially through its interaction with microtubule-related proteins to place lysosomes at perinuclear regions, thus, facilitating PS-ASO's localization to lysosomes for degradation.
    Keywords:  PS-ASO; SIDT2; lysosome; microtubule
    DOI:  https://doi.org/10.1089/nat.2022.0055
  3. Proc Natl Acad Sci U S A. 2023 Jan 03. 120(1): e2212330120
      Target of Rapamycin Complex I (TORC1) is a central regulator of metabolism in eukaryotes that responds to a wide array of negative and positive inputs. The GTPase-activating protein toward Rags (GATOR) signaling pathway acts upstream of TORC1 and is comprised of two subcomplexes. The trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation by serving as a GTPase-activating protein (GAP) for the TORC1 activator RagA/B, a component of the lysosomally located Rag GTPase. The multi-protein GATOR2 complex inhibits the activity of GATOR1 and thus promotes TORC1 activation. Here we report that Wdr59, originally assigned to the GATOR2 complex based on studies performed in tissue culture cells, unexpectedly has a dual function in TORC1 regulation in Drosophila. We find that in the ovary and the eye imaginal disc brain complex, Wdr59 inhibits TORC1 activity by opposing the GATOR2-dependent inhibition of GATOR1. Conversely, in the Drosophila fat body, Wdr59 promotes the accumulation of the GATOR2 component Mio and is required for TORC1 activation. Similarly, in mammalian HeLa cells, Wdr59 prevents the proteolytic destruction of GATOR2 proteins Mio and Wdr24. Consistent with the reduced levels of the TORC1-activating GATOR2 complex, Wdr59KOs HeLa cells have reduced TORC1 activity which is restored along with GATOR2 protein levels upon proteasome inhibition. Taken together, our data support the model that the Wdr59 component of the GATOR2 complex functions to promote or inhibit TORC1 activity depending on cellular context.
    Keywords:  Drosophila; GATOR1; GATOR2; TORC1; Wdr59
    DOI:  https://doi.org/10.1073/pnas.2212330120
  4. Autophagy. 2022 Dec 26. 1-2
      Mitochondria, often called "the powerhouse" of the cell due to their role as the main energy supplier, regulate numerous complex processes including intracellular calcium homeostasis, reactive oxygen species (ROS) production, regulation of immune responses, and apoptosis. So, mitochondria are a fundamental metabolic hub that also control cell survival and cell death. However, they are not unique in all these functions. Indeed, peroxisomes are small cytoplasmic organelles that also ensure metabolic functions such as fatty acid oxidation and ROS production. This common relationship also extends beyond function as peroxisomes themselves can form from mitochondrial-derived precursors. Given this interconnection between mitochondria and peroxisomes involving biogenesis and function, in our recent work we determined if their turnover was also linked.
    Keywords:  Autophagy; BNIP3L; NIX; mitophagy; pexophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2155368
  5. Sci Rep. 2022 Dec 27. 12(1): 22452
      Autophagy results in the degradation of cytosolic components via two major membrane deformations. First, the isolation membrane sequesters components from the cytosol and forms autophagosomes, by which open structures become closed compartments. Second, the outer membrane of the autophagosomes fuses with lysosomes to degrade the inner membrane and its contents. The efficiency of the latter degradation process, namely autophagic flux, can be easily evaluated using lysosomal inhibitors, whereas the dynamics of the former process is difficult to analyze because of the challenges in identifying closed compartments of autophagy (autophagosomes and autolysosomes). To resolve this problem, we here developed a method to detect closed autophagic compartments by applying the FLIP technique, and named it FLIP-based Autophagy Detection (FLAD). This technique visualizes closed autophagic compartments and enables differentiation of open autophagic structures and closed autophagic compartments in live cells. In addition, FLAD analysis detects not only starvation-induced canonical autophagy but also genotoxic stress-induced alternative autophagy. By the combinational use of FLAD and LC3, we were able to distinguish the structures of canonical autophagy from those of alternative autophagy in a single cell.
    DOI:  https://doi.org/10.1038/s41598-022-26430-5
  6. Biochim Biophys Acta Gen Subj. 2022 Dec 23. pii: S0304-4165(22)00219-7. [Epub ahead of print] 130301
      Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.
    Keywords:  Anticancer agent; Clinical trial; Drug discovery; Metabolic reprograming; Therapeutic target
    DOI:  https://doi.org/10.1016/j.bbagen.2022.130301
  7. Mol Cancer Res. 2022 Dec 27. pii: MCR-22-0684. [Epub ahead of print]
      Immune checkpoint inhibitors (ICIs) have transformed the treatment of melanoma. However, the majority of patients have primary or acquired resistance to ICIs, limiting durable responses and patient survival. Interferon-gamma (IFNγ) signaling and the expression of IFNγ-stimulated genes correlate with either response or resistance to ICIs, in a context-dependent manner. While IFNγ-inducible immunostimulatory genes are required for response to ICIs, chronic IFNγ signaling induces the expression of immunosuppressive genes, promoting resistance to these therapies. Here, we show that high levels of ULK1 correlate with poor survival in melanoma patients and overexpression of ULK1 in melanoma cells enhances IFNγ-induced expression of immunosuppressive genes, with minimal effects on the expression of immunostimulatory genes. In contrast, genetic or pharmacological inhibition of ULK1 reduces expression of IFNγ-induced immunosuppressive genes. ULK1 binds IRF1 in the nuclear compartment of melanoma cells, controlling its binding to the PD-L1 promoter region. Additionally, pharmacological inhibition of ULK1 in combination with anti-PD-1 therapy further reduces melanoma tumor growth in vivo. Our data suggest that targeting ULK1 represses IFNγ-dependent immunosuppression. These findings support the combination of ULK1 drug-targeted inhibition with ICIs for the treatment of melanoma patients to improve response rates and patient outcomes. Implications: This study identifies ULK1, activated downstream of IFNγ signaling, as a druggable target to overcome resistance mechanisms to ICI therapy in metastatic melanoma.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-22-0684