Autophagy. 2023 Feb 21.
Although PIKFYVE phosphoinositide kinase inhibitors can selectively eliminate PIKFYVE-dependent human cancer cells in vitro and in vivo, the basis for this selectivity has remained elusive. Here we show that the sensitivity of cells to the PIKFYVE inhibitor WX8 is not linked to PIKFYVE expression, macroautophagic/autophagic flux, the BRAFV600E mutation, or ambiguous inhibitor specificity. PIKYVE dependence results from a deficiency in the PIP5K1C phosphoinositide kinase, an enzyme required for conversion of phosphatidylinositol-4-phosphate (PtdIns4P) into phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2/PIP2), a phosphoinositide associated with lysosome homeostasis, endosome trafficking, and autophagy. PtdIns(4,5)P2 is produced via two independent pathways. One requires PIP5K1C; the other requires PIKFYVE and PIP4K2C to convert PtdIns3P into PtdIns(4,5)P2. In PIKFYVE-dependent cells, low concentrations of WX8 specifically inhibit PIKFYVE in situ, thereby increasing the level of its substrate PtdIns3P while suppressing PtdIns(4,5)P2 synthesis and inhibiting lysosome function and cell proliferation. At higher concentrations, WX8 inhibits both PIKFYVE and PIP4K2C in situ, which amplifies these effects to further disrupt autophagy and induce cell death. WX8 did not alter PtdIns4P levels. Consequently, inhibition of PIP5K1C in WX8-resistant cells transformed them into sensitive cells, and overexpression of PIP5K1C in WX8-sensitive cells increased their resistance to WX8. This discovery suggests that PIKFYVE-dependent cancers could be identified clinically by low levels of PIP5K1C and treated with PIKFYVE inhibitors.
Keywords: 5)P2; PIKFYVE; PIP2; PIP4K2C; PIP5K1C; PtdIns(4; WX8; autophagy; lysosome