Autophagy. 2026 Jan 04.
1-18
Zelai Wu,
Hanyu Zhan,
Zhiming Huang,
Changjing Wang,
Boran Li,
Yepeng Hu,
Zhida Chen,
Wei Liu,
Weihua Gong,
Yongjuan Sang,
Qiming Sun.
Lysosome homeostasis is vital for cellular fitness due to the essential roles of this organelle in various pathways. Given their extensive workload, lysosomes are prone to damage, which can stimulate lysosomal quality control mechanisms such as biogenesis, repair, or autophagic removal - a process termed lysophagy. Despite recent advances highlighting lysophagy as a critical mechanism for lysosome maintenance, the extent of lysosome integrity perturbation and the magnitude of lysophagy in vivo remain largely unexplored. Additionally, the pathophysiological relevance of lysophagy is poorly understood. To address these gaps, it is necessary to develop quantifiable methods for evaluating lysosome damage and lysophagy flux in vivo. To this end, we created two transgenic mouse lines expressing a tandem fluorescent LGALS3/galectin 3 probe (tfGAL3), either constitutively or conditionally under Cre recombinase control, utilizing the property of LGALS3 to recognize damaged lysosomes. This tool enables spatiotemporal visualization of lysosome damage and lysophagy activity at single-cell resolution in vivo. Systemic analysis across various organs, tissues, and primary cultures from these lysophagy reporter mice revealed significant variations in basal lysophagy, both in vivo and in vitro. Additionally, this study identified substantial changes in lysosome integrity and lysophagy flux in different tissues under stress conditions such as starvation, acute kidney injury and diabetic modeling. In conclusion, these complementary lysophagy reporter models are valuable resources for both basic and translational research.Abbreviation: AAV: adeno-associated virus; ATG7: autophagy related 7; CA-tfGAL3: cre-recombinase-activated tandem fluorescent LGALS3; DAPI: 4',6-diamidino-2-phenylindole; DM: diabetes mellitus; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HFD: high-fat diet; Igs2/H11/Hipp11: intergenic site 2; IST1: IST1 factor associated with ESCRT-III; KI: knock-in; LAMP1: lysosomal-associated membrane protein 1; LGALS3: lectin, galactoside-binding, soluble, 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; MEFs: mouse embryonic fibroblasts; NaOx: sodium oxalate; PDCD6IP: programmed cell death 6 interacting protein; PTECs: proximal tubular epithelial cells; RFP: red fluorescent protein; STZ: streptozotocin; TAM: tamoxifen; tfGAL3: tandem fluorescent LGALS3; TMEM192: transmembrane protein 192.
Keywords: In vivo; lysophagy; lysosome; lysosome damage; ratiometric probe