bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2021‒02‒21
twenty-nine papers selected by
Stephanie Fernandes
Max Planck Institute for Biology of Ageing


  1. Proc Natl Acad Sci U S A. 2021 Feb 23. pii: e2014941118. [Epub ahead of print]118(8):
      PQLC2, a lysosomal cationic amino acid transporter, also serves as a sensor that responds to scarcity of its substrates by recruiting a protein complex composed of C9orf72, SMCR8, and WDR41 to the surface of lysosomes. This protein complex controls multiple aspects of lysosome function. Although it is known that this response to changes in cationic amino acid availability depends on an interaction between PQLC2 and WDR41, the underlying mechanism for the regulated interaction is not known. In this study, we present evidence that the WDR41-PQLC2 interaction is mediated by a short peptide motif in a flexible loop that extends from the WDR41 β-propeller and inserts into a cavity presented by the inward-facing conformation of PQLC2. The data support a transceptor model wherein conformational changes in PQLC2 related to substrate transport regulate the availability of the WDR41-binding site on PQLC2 and mediate recruitment of the WDR41-SMCR8-C9orf72 complex to the surface of lysosomes.
    Keywords:  C9orf72; PQLC2; lysosome; transceptor; transporter
    DOI:  https://doi.org/10.1073/pnas.2014941118
  2. Biochem J. 2021 Feb 19. pii: BCJ20200676. [Epub ahead of print]
      Abnormal lipid accumulation is associated to the development of metabolic diseases such as hepatic steatosis and lipid storage diseases. Pharmacological agents that can attenuate lipid accumulation therefore have therapeutic potentials for these diseases. Resveratrol (RSV), a natural active substance found in fruits and nuts, has been reported to effectively reduce the intracellular lipid accumulation, but the underlying mechanisms of RSV remain elusive. Here, we show that RSV triggers an endoplasmic reticulum (ER)- Ca2+ signaling that activates transcriptional factor EB (TFEB), a master transcriptional regulator of autophagic and lysosomal biogenesis. Moreover, RSV activates protein phosphatase 2A (PP2A), which binds and dephosphorylates TFEB, promoting its nuclear translocation and the expression of TFEB target genes required for autophagosome and lysosomal biogenesis. Notably, genetic inhibition of TFEB significantly ameliorates RSV-mediated lipid clearance. Taken together, these data link RSV-induced ER calcium signaling, PP2A and TFEB activation to promote autophagy and lysosomal function, by which RSV may trigger a cellular self-defense mechanism that effectively mitigate lipid accumulation commonly associated with many metabolic diseases.
    Keywords:  Lysosome; PP2A; Resveratrol; TFEB
    DOI:  https://doi.org/10.1042/BCJ20200676
  3. J Cell Sci. 2021 Feb 15. pii: jcs.248203. [Epub ahead of print]
      TFEB, a bHLH transcription factor, is a master regulator of autophagy, lysosome biogenesis, and lipid catabolism. Compared to the post-translational regulation, the regulation of TFEB mRNA stability remains relatively uncharacterized. In this study, we identified the mRNA-binding protein THOC4 as a novel regulator of TFEB. In mammalian cells, siRNA-mediated knockdown of THOC4 decreased the level of TFEB protein to a greater extent than other bHLH transcription factors. THOC4 bound to TFEB mRNA and stabilized it after transcription through maintaining polyA length. We further found that this mode of regulation was conserved in C. elegans and was essential for TFEB mediated lipid break-down which becomes overrepresented during prolonged starvation. Taken together our study reveals the presence of an additional layer of TFEB regulation by THOC4 and provide novel insights into the function TFEB mediating autophagy and lipid metabolism.
    Keywords:  : TFEB; Autophagy; Lipid catabolism; MRNA stability; THOC4
    DOI:  https://doi.org/10.1242/jcs.248203
  4. Mol Neurobiol. 2021 Feb 16.
      Vesicular chloride/proton exchangers of the CLC family are critically involved in the function of the endosomal-lysosomal pathway. Their dysfunction leads to severe disorders including intellectual disability and epilepsy for ClC-4, Dent's disease for ClC-5, and lysosomal storage disease and osteopetrosis for ClC-7. Here, we report a de novo variant p.Glu200Ala (p.E200A; c.599A>C) of the late endosomal ClC-6, encoded by CLCN6, in a patient with West syndrome (WS), severe developmental delay, autism, movement disorder, microcephaly, facial dysmorphism, and visual impairment. Mutation of this conserved glutamate uncouples chloride transport from proton antiport by ClC-6. This affects organellar ion homeostasis and was shown to be deleterious for other CLCs. In this study, we found that upon heterologous expression, the ClC-6 E200A variant caused autophagosome accumulation and impaired the clearance of autophagosomes by blocking autophagosome-lysosome fusion. Our study provides clinical and functional support for an association between CLCN6 variants and WS. Our findings also provide novel insights into the molecular mechanisms underlying the pathogenesis of WS, suggesting an involvement of autophagic-lysosomal dysfunction.
    Keywords:  Autophagy; CLCN6; Chloride/proton exchanger; Lysosome; West syndrome
    DOI:  https://doi.org/10.1007/s12035-021-02291-3
  5. J Cell Sci. 2021 Feb 18. pii: jcs.256578. [Epub ahead of print]
      Lysosomes are acidic Ca2+ stores often mobilised in conjunction with endoplasmic reticulum (ER) Ca2+ stores. GPN is a widely used lysosomotropic agent that evokes cytosolic Ca2+ signals in many cells. But whether these signals are due to a primary action on lysosomes is unclear in light of recent evidence showing GPN mediates direct ER Ca2+ release through changes in cytosolic pH. Here, we show that GPN evoked rapid increases in cytosolic pH but slower Ca2+ signals. NH4Cl evoked comparable changes in pH but failed to affect Ca2+ The V-type ATPase inhibitor, bafilomycin A1, increased lysosomal pH over a period of hours. Acute treatment modestly affected lysosomal pH and potentiated Ca2+ signals evoked by GPN. In contrast, chronic treatment led to more profound changes in luminal pH and selectively inhibited GPN-action. GPN blocked Ca2+ responses evoked by the novel NAADP-like agonist, TPC2-A1-N. GPN-evoked Ca2+ signals were thus better correlated with associated pH changes in the lysosome compared to the cytosol and coupled to lysosomal Ca2+ release. We conclude that Ca2+ signals evoked by GPN most likely derive from acidic organelles.
    Keywords:  Ca2+; Lysosomes; NAADP; Two-pore channels
    DOI:  https://doi.org/10.1242/jcs.256578
  6. Mol Biol Rep. 2021 Jan 28.
      Mucolipidosis III gamma (ML III γ) is a slowly progressive disorder that affects multiple parts of the body such as the skeleton, joints, and connective tissue structures. It is caused by pathogenic variants in the GNPTG gene that provides instructions for producing the γ subunit of GlcNAc-1-phosphotransferase. In this study we aim to characterize clinical findings and biological insights on two novel GNPTG variants causing ML III γ phenotypes with varying severity. We report on two siblings with ML III γ bearing the previously undescribed c.477C > G (p.Y159*) nonsense variant in a homozygous state as well as a patient with ML III γ bearing the novel c.110 + 19_111-17del variant in a homozygous state. These variants were revealed by whole-exome sequencing and Sanger sequencing, respectively. Their parents, who are heterozygotes for the same mutation, are healthy. The clinical and radiographic presentation of ML III γ in our patients who had c.477C > G (p.Y159*) variant is consistent with a relatively severe form of the disease, which is further supported by a working three-dimensional model of the GlcNAc-1-phosphotransferase γ subunit. On the other hand, it is seen that our patient who carries the c.110 + 19_111-17del variant has a milder phenotype. Our findings help broaden the spectrum of GNPTG variants causing ML III γ and offer structural and mechanistic insights into loss of GlcNAc-1-phosphotransferase γ subunit function.
    Keywords:  GNPTG; GlcNAc-1-phosphotransferase; Lysosomal storage disorder; Mucolipidosis III gamma
    DOI:  https://doi.org/10.1007/s11033-021-06158-7
  7. Curr Biol. 2021 Feb 09. pii: S0960-9822(21)00061-0. [Epub ahead of print]
      Bidirectional communication between cells and their surrounding environment is critical in both normal and pathological settings. Extracellular vesicles (EVs), which facilitate the horizontal transfer of molecules between cells, are recognized as an important constituent of cell-cell communication. In cancer, alterations in EV secretion contribute to the growth and metastasis of tumor cells. However, the mechanisms underlying these changes remain largely unknown. Here, we show that centrosome amplification is associated with and sufficient to promote small extracellular vesicle (SEV) secretion in pancreatic cancer cells. This is a direct result of lysosomal dysfunction, caused by increased reactive oxygen species (ROS) downstream of extra centrosomes. We propose that defects in lysosome function could promote multivesicular body fusion with the plasma membrane, thereby enhancing SEV secretion. Furthermore, we find that SEVs secreted in response to amplified centrosomes are functionally distinct and activate pancreatic stellate cells (PSCs). These activated PSCs promote the invasion of pancreatic cancer cells in heterotypic 3D cultures. We propose that SEVs secreted by cancer cells with amplified centrosomes influence the bidirectional communication between the tumor cells and the surrounding stroma to promote malignancy.
    Keywords:  PDAC; ROS; cancer; centrosome amplification; exosomes; extracellular vesicles; invasion; lysosomes; multivesicular bodies; stellate cells
    DOI:  https://doi.org/10.1016/j.cub.2021.01.028
  8. Neurochem Int. 2021 Feb 11. pii: S0197-0186(21)00034-6. [Epub ahead of print] 104988
      The progressive deposition of misfolded and aggregated forms of Tau protein in the brain is a pathological hallmark of tauopathies, such as Alzheimer's disease (AD) and frontotemporal degeneration (FTD). The misfolded Tau can be released into the extracellular space and internalized by neighboring cells, acting as seeds to trigger the robust conversion of soluble Tau into insoluble filamentous aggregates in a prion-like manner, ultimately contributing to the progression of the disease. However, molecular mechanisms accountable for the propagation of Tau pathology are poorly defined. We reviewed the Tau processing imbalance in endosomal, lysosomal, and exosomal pathways in AD. Increased exosome release counteracts the endosomal-lysosomal dysfunction of Tau processing but increases the number of aggregates and the propagation of Tau. This review summarizes our current understanding of the underlying tauopathy mechanisms with an emphasis on the emerging role of the endosomal-lysosomal-exosome pathways in this process. The components CHMP6, TSG101, and other components of the ESCRT complex, as well as Rab GTPase such as Rab35 and Rab7A, regulate vesicle cargoes routing from endosome to lysosome and affect Tau traffic, degradation, or secretion. Thus, the significant molecular pathways that should be potential therapeutic targets for treating tauopathies are determined.
    Keywords:  Tau; aggregation; endosomal; exosomes; lysosomal; propagation
    DOI:  https://doi.org/10.1016/j.neuint.2021.104988
  9. Exp Biol Med (Maywood). 2021 Feb 14. 1535370221993052
      GM1 gangliosidosis is a rare lysosomal storage disease caused by a deficiency of β-galactosidase due to mutations in the GLB1 gene. We established a C57BL/6 mouse model with Glb1G455R mutation using CRISPR/Cas9 genome editing. The β-galactosidase enzyme activity of Glb1G455R mice measured by fluorometric assay was negligible throughout the whole body. Mutant mice displayed no marked phenotype at eight weeks. After 16 weeks, GM1 ganglioside accumulation in the brain of mutant mice was observed by immunohistochemical staining. Meanwhile, a declining performance in behavioral tests was observed among mutant mice from 16 to 32 weeks. As the disease progressed, the neurological symptoms of mutant mice worsened, and they then succumbed to the disease by 47 weeks of age. We also observed microglia activation and proliferation in the cerebral cortex of mutant mice at 16 and 32 weeks. In these activated microglia, the level of autophagy regulator LC3 was up-regulated but the mRNA level of LC3 was normal. In conclusion, we developed a novel murine model that mimicked the chronic phenotype of human GM1. This Glb1G455R murine model is a practical in vivo model for studying the pathogenesis of GM1 gangliosidosis and exploring potential therapies.
    Keywords:  GM1 gangliosidosis; microglia; mouse model; mutation
    DOI:  https://doi.org/10.1177/1535370221993052
  10. Physiol Rev. 2021 Feb 18.
      Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves crosstalk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge on their cellular, tissue as well as systemic functions in metabolism. Nevertheless, our knowledge on the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review will discuss the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models, but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders and aging.
    Keywords:  cancer metabolism; mTOR; mTORC; metabolic reprogramming; metabolism
    DOI:  https://doi.org/10.1152/physrev.00026.2020
  11. Cancer Res. 2021 Feb 16. pii: canres.2218.2020. [Epub ahead of print]
      Lymphangioleiomyomatosis (LAM) is a rare destructive lung disease affecting primarily women and is the primary lung manifestation of tuberous sclerosis complex (TSC). In LAM, biallelic loss of TSC1/2 leads to hyperactivation of mTORC1 and inhibition of autophagy. To determine how the metabolic vulnerabilities of TSC2-deficient cells can be targeted, we performed a high throughput screen utilizing the "Repurposing" library at the Broad Institute, with or without the autophagy inhibitor chloroquine. Ritanserin, an inhibitor of diacylglycerol kinase alpha (DGKA), was identified as a selective inhibitor of proliferation of Tsc2-/- MEFs, with no impact on Tsc2+/+ MEFs. DGKA is a lipid kinase that metabolizes diacylglycerol (DAG) to phosphatidic acid (PA), a key component of plasma membranes. PA levels were increased 5-fold in Tsc2-/- MEFs compared to Tsc2+/+ MEFs, and treatment of Tsc2-/- MEFs with ritanserin led to depletion of PA as well as rewiring of phospholipid metabolism. Macropinocytosis is known to be upregulated in TSC2-deficient cells. Ritanserin decreased macropinocytic uptake of albumin, limited the number of lysosomes, and reduced lysosomal activity in Tsc2-/- MEFs. In a mouse model of TSC, ritanserin treatment decreased cyst frequency and volume, and in a mouse model of LAM, genetic downregulation of DGKA prevented alveolar destruction and airspace enlargement. Collectively, these data indicate that DGKA supports macropinocytosis in TSC2-deficient cells to maintain phospholipid homeostasis and promote proliferation. Targeting macropinocytosis with ritanserin may represent a novel therapeutic approach for the treatment of TSC and LAM.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-2218
  12. Front Cell Infect Microbiol. 2020 ;10 596609
      Vibrio vulnificus (V. vulnificus) is an estuarine bacterium that is capable of causing rapidly fatal infection in humans. Proper polarization and bactericidal activity of macrophages play essential roles in defending against invading pathogens. How macrophages limit V. vulnificus infection remains not well understood. Here we report that tuberous sclerosis complex 1 (TSC1) is crucial for the regulation of V. vulnificus-induced macrophage polarization, bacterial clearance, and cell death. Mice with myeloid-specific deletion of TSC1 exhibit a significant reduction of survival time after V. vulnificus infection. V. vulnificus infection induces both M1 and M2 polarization. However, TSC1 deficient macrophages show enhanced M1 response to V. vulnificus infection. Interestedly, the absence of TSC1 in myeloid cells results in impaired bacterial clearance both in vivo and in vitro after V. vulnificus infection. Inhibition of the mammalian target of rapamycin (mTOR) activity significantly reverses V. vulnificus-induced hypersensitive M1 response and resistant bactericidal activity both in wild-type and TSC1-deficient macrophages. Moreover, V. vulnificus infection causes cell death of macrophages, possibly contributes to defective of bacterial clearance, which also exhibits in a mTORC1-dependent manner. These findings highlight an essential role for the TSC1-mTOR signaling in the regulation of innate immunity against V. vulnificus infection.
    Keywords:  Vibrio vulnificus; bactericidal activity; macrophage; mammalian target of rapamycin; polarization; tuberous sclerosis complex 1
    DOI:  https://doi.org/10.3389/fcimb.2020.596609
  13. Cell Rep. 2021 Jan 26. pii: S2211-1247(20)31667-3. [Epub ahead of print]34(4): 108678
      Osteosarcoma is the most common pediatric and adult primary malignant bone cancer. Curative regimens target the folate pathway, downstream of serine metabolism, with high-dose methotrexate. Here, the rate-limiting enzyme in the biosynthesis of serine from glucose, 3-phosphoglycerate dehydrogenase (PHGDH), is examined, and an inverse correlation between PHGDH expression and relapse-free and overall survival in osteosarcoma patients is found. PHGDH inhibition in osteosarcoma cell lines attenuated cellular proliferation without causing cell death, prompting a robust metabolic analysis to characterize pro-survival compensation. Using metabolomic and lipidomic profiling, cellular response to PHGDH inhibition is identified as accumulation of unsaturated lipids, branched chain amino acids, and methionine cycle intermediates, leading to activation of pro-survival mammalian target of rapamycin complex 1 (mTORC1) signaling. Increased mTORC1 activation sensitizes cells to mTORC1 pathway inhibition, resulting in significant, synergistic cell death in vitro and in vivo. Identifying a therapeutic combination for PHGDH-high cancers offers preclinical justification for a dual metabolism-based combination therapy for osteosarcoma.
    Keywords:  GATOR; PHGDH; SAMTOR; lipid metabolism; mTORC1; methotrexate; one-carbon metabolism; osteosarcoma; perhexiline; serine biosynthesis
    DOI:  https://doi.org/10.1016/j.celrep.2020.108678
  14. Trends Biochem Sci. 2021 Feb 13. pii: S0968-0004(21)00020-7. [Epub ahead of print]
      Autophagy is the primary catabolic program of the cell that promotes survival in response to metabolic stress. It is tightly regulated by a suite of kinases responsive to nutrient status, including mammalian target of rapamycin complex 1 (mTORC1), AMP-activated protein kinase (AMPK), protein kinase C-α (PKCα), MAPK-activated protein kinases 2/3 (MAPKAPK2/3), Rho kinase 1 (ROCK1), c-Jun N-terminal kinase 1 (JNK), and Casein kinase 2 (CSNK2). Here, we highlight recently uncovered mechanisms linking amino acid, glucose, and oxygen levels to autophagy regulation through mTORC1 and AMPK. In addition, we describe new pathways governing the autophagic machinery, including the Unc-51-like (ULK1), vacuolar protein sorting 34 (VPS34), and autophagy related 16 like 1 (ATG16L1) enzyme complexes. Novel downstream targets of ULK1 protein kinase are also discussed, such as the ATG16L1 subunit of the microtubule-associated protein 1 light chain 3 (LC3)-lipidating enzyme and the ATG14 subunit of the VPS34 complex. Collectively, we describe the complexities of the autophagy pathway and its role in maintaining cellular nutrient homeostasis during times of starvation.
    Keywords:  AMPK; ATG complexes; amino acids; glucose; mTORC1; oxygen
    DOI:  https://doi.org/10.1016/j.tibs.2021.01.006
  15. Stem Cell Rev Rep. 2021 Feb 14.
      Blood is generated throughout life by continued proliferation and differentiation of hematopoietic progenitors, while at the top of the hierarchy, hematopoietic stem cells (HSCs) remain largely quiescent. This way HSCs avoid senescence and preserve their capacity to repopulate the hematopoietic system. But HSCs are not always quiescent, proliferating extensively in conditions such as those found in the fetal liver. Understanding the elusive mechanisms that regulate HSC fate would enable us to comprehend a crucial piece of HSC biology and pave the way for ex-vivo HSC expansion with clear clinical benefit. Here we review how metabolism, endoplasmic reticulum stress and oxidative stress condition impact HSCs decision to self-renew or differentiate and how these signals integrate into the mammalian target of rapamycin (mTOR) pathway. We argue that the bone marrow microenvironment continuously favors differentiation through the activation of the mTOR complex (mTORC)1 signaling, while the fetal liver microenvironment favors self-renewal through the inverse mechanism. In addition, we also postulate that strategies that have successfully achieved HSC expansion, directly or indirectly, lead to the inactivation of mTORC1. Finally, we propose a mechanism by which mTOR signaling, during cell division, conditions HSC fate. This mechanism has already been demonstrated in mature hematopoietic cells (T-cells), that face a similar decision after activation, either undergoing clonal expansion or differentiation.
    Keywords:  Bone marrow microenvironment; Fate decision mechanism; HSC expansion; Hematopoietic stem cell; mTOR
    DOI:  https://doi.org/10.1007/s12015-021-10131-z
  16. Nat Commun. 2021 02 16. 12(1): 1055
      mTORC1, a central controller of cell proliferation in response to growth factors and nutrients, is dysregulated in cancer. Whereas arginine activates mTORC1, it is overridden by high expression of cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1). Because cancer cells often encounter low levels of nutrients, an alternative mechanism might exist to regulate CASTOR1 expression. Here we show K29-linked polyubiquitination and degradation of CASTOR1 by E3 ubiquitin ligase RNF167. Furthermore, AKT phosphorylates CASTOR1 at S14, significantly increasing its binding to RNF167, and hence its ubiquitination and degradation, while simultaneously decreasing its affinity to MIOS, leading to mTORC1 activation. Therefore, AKT activates mTORC1 through both TSC2- and CASTOR1-dependent pathways. Several cell types with high CASTOR1 expression are insensitive to arginine regulation. Significantly, AKT and RNF167-mediated CASTOR1 degradation activates mTORC1 independent of arginine and promotes breast cancer progression. These results illustrate a mTORC1 regulating mechanism and identify RNF167 as a therapeutic target for mTORC1-dysregulated diseases.
    DOI:  https://doi.org/10.1038/s41467-021-21206-3
  17. Immunohorizons. 2021 Feb 17. 5(2): 90-101
      Candida albicans is the most common, opportunistic human fungal pathogen whose complex interplay with the host innate immune system remains incompletely understood. In this study, we revealed that infection macrophages with C. albicans triggers prominent cell death, which is largely attributed to the RIPK3/MLKL-mediated necroptosis. Our results further demonstrated that the TSC1-mTOR pathway plays a pivotal role in the control of macrophage necroptosis upon engaging the Dectin-1/2 and TLR-2/4 pathways through fungal components β-glucan/α-mannan or Sel1, respectively. Notably, the rapamycin-sensitive mTORC1 pathway, rather than the rapamycin-insensitive mTORC2 pathway, was responsible for elevated activation of RIPK1, RIPK3, and MLKL in TSC1-deficient macrophages. Following systemic infection with C. albicans, mice with macrophage/neutrophil-specific deletion of Tsc1 (Tsc1 M/N-/-) showed heightened fungal burden in multiple organs, such as the kidney, liver, and spleen, severe morbidity, and mortality. Notably, Tsc1 M/N-/- kidneys exhibited prominent cell death and concomitant loss of tissue-resident macrophages, which likely contributing to a dampened phagocytosis of fungal pathogens. Together, our data demonstrate a crucial role for the TSC1-mTOR pathway in the regulation of macrophage necroptosis and suggest that both Dectin- and TLRs-induced necroptosis may undermine the immune defense effector functions of these innate receptors during C. albicans infection.
    DOI:  https://doi.org/10.4049/immunohorizons.2000093
  18. Front Cell Dev Biol. 2021 ;9 628910
      Arf-family small GTPases are essential protein components for membrane trafficking in all eukaryotic endomembrane systems, particularly during the formation of membrane-bound, coat protein complex-coated transport carriers. In addition to their roles in the transport carrier formation, a number of Arf-family GTPases have been reported to physically associate with coiled-coil tethering proteins and multisubunit tethering complexes, which are responsible for membrane tethering, a process of the initial contact between transport carriers and their target subcellular compartments. Nevertheless, whether and how indeed Arf GTPases are involved in the tethering process remain unclear. Here, using a chemically-defined reconstitution approach with purified proteins of two representative Arf isoforms in humans (Arf1, Arf6) and synthetic liposomes for model membranes, we discovered that Arf6 can function as a bona fide membrane tether, directly and physically linking two distinct lipid bilayers even in the absence of any other tethering factors, whereas Arf1 retained little potency to trigger membrane tethering under the current experimental conditions. Arf6-mediated membrane tethering reactions require trans-assembly of membrane-anchored Arf6 proteins and can be reversibly controlled by the membrane attachment and detachment cycle of Arf6. The intrinsic membrane tethering activity of Arf6 was further found to be significantly inhibited by the presence of membrane-anchored Arf1, suggesting that the tethering-competent Arf6-Arf6 assembly in trans can be prevented by the heterotypic Arf1-Arf6 association in a cis configuration. Taken together, these findings lead us to postulate that self-assemblies of Arf-family small GTPases on lipid bilayers contribute to driving and regulating the tethering events of intracellular membrane trafficking.
    Keywords:  Arf GTPase; Arf6; liposome; membrane tethering; membrane trafficking; reconstitution; small GTPase
    DOI:  https://doi.org/10.3389/fcell.2021.628910
  19. Elife. 2021 Feb 17. pii: e61406. [Epub ahead of print]10
      The kinase PDK1 is a crucial regulator for immune cell development by connecting PI3K to downstream AKT signaling. However, the roles of PDK1 in CD4+ T cell differentiation, especially in T follicular helper (Tfh) cell, remain obscure. Here we reported PDK1 intrinsically promotes the Tfh cell differentiation and germinal center responses upon acute infection by using conditional knockout mice. PDK1 deficiency in T cells caused severe defects in both early differentiation and late maintenance of Tfh cells. The expression of key Tfh regulators was remarkably downregulated in PDK1-deficient Tfh cells, including Tcf7, Bcl6, Icos, and Cxcr5. Mechanistically, ablation of PDK1 led to impaired phosphorylation of AKT and defective activation of mTORC1, resulting in substantially reduced expression of Hif1α and p-STAT3. Meanwhile, decreased p-AKT also suppresses mTORC2-associated GSK3β activity in PDK1-deficient Tfh cells. These integrated effects contributed to the dramatical reduced expression of TCF1 and ultimately impaired the Tfh cell differentiation.
    Keywords:  PDK1; T follicular helper cell; Tcf-1; Tfh; differentiation; immunology; inflammation; mouse
    DOI:  https://doi.org/10.7554/eLife.61406
  20. Mol Cell. 2021 Feb 18. pii: S1097-2765(21)00053-8. [Epub ahead of print]81(4): 708-723.e5
      The PI3K pathway regulates cell metabolism, proliferation, and migration, and its dysregulation is common in cancer. We now show that both physiologic and oncogenic activation of PI3K signaling increase the expression of its negative regulator PTEN. This limits the duration of the signal and output of the pathway. Physiologic and pharmacologic inhibition of the pathway reduces PTEN and contributes to the rebound in pathway activity in tumors treated with PI3K inhibitors and limits their efficacy. Regulation of PTEN is due to mTOR/4E-BP1-dependent control of its translation and is lost when 4E-BP1 is deleted. Translational regulation of PTEN is therefore a major homeostatic regulator of physiologic PI3K signaling and plays a role in reducing the pathway activation by oncogenic PIK3CA mutants and the antitumor activity of PI3K pathway inhibitors. However, pathway output is hyperactivated in tumor cells with coexistent PI3K mutation and loss of PTEN function.
    Keywords:  4E-BP; BYL-719; PI3K signaling; PTEN regulation; PTEN translation; computational model of PI3K signaling; growth factor signaling; mTOR; negative feedback; resistance to PI3K inhibition
    DOI:  https://doi.org/10.1016/j.molcel.2021.01.033
  21. Cell Chem Biol. 2021 Feb 09. pii: S2451-9456(21)00042-8. [Epub ahead of print]
      Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
    Keywords:  Golgi apparatus; drug screening; functional probes; high-content analysis; high-content imaging; lysosome; membraneless organelles; mitochondria; organelles
    DOI:  https://doi.org/10.1016/j.chembiol.2021.01.016
  22. Front Oncol. 2020 ;10 614288
      Angiosarcoma is a rare cancer of blood vessel-forming cells with a high patient mortality and few treatment options. Although chemotherapy often produces initial clinical responses, outcomes remain poor, largely due to the development of drug resistance. We previously identified a subset of doxorubicin-resistant cells in human angiosarcoma and canine hemangiosarcoma cell lines that exhibit high lysosomal accumulation of doxorubicin. Hydrophobic, weak base chemotherapeutics, like doxorubicin, are known to sequester within lysosomes, promoting resistance by limiting drug accessibility to cellular targets. Drug synergy between the beta adrenergic receptor (β-AR) antagonist, propranolol, and multiple chemotherapeutics has been documented in vitro, and clinical data have corroborated the increased therapeutic potential of propranolol with chemotherapy in angiosarcoma patients. Because propranolol is also a weak base and accumulates in lysosomes, we sought to determine whether propranolol enhanced doxorubicin cytotoxicity via antagonism of β-ARs or by preventing the lysosomal accumulation of doxorubicin. β-AR-like immunoreactivities were confirmed in primary tumor tissues and cell lines; receptor function was verified by monitoring downstream signaling pathways of β-ARs in response to receptor agonists and antagonists. Mechanistically, propranolol increased cytoplasmic doxorubicin concentrations in sarcoma cells by decreasing the lysosomal accumulation and cellular efflux of this chemotherapeutic agent. Equivalent concentrations of the receptor-active S-(-) and -inactive R-(+) enantiomers of propranolol produced similar effects, supporting a β-AR-independent mechanism. Long-term exposure of hemangiosarcoma cells to propranolol expanded both lysosomal size and number, yet cells remained sensitive to doxorubicin in the presence of propranolol. In contrast, removal of propranolol increased cellular resistance to doxorubicin, underscoring lysosomal doxorubicin sequestration as a key mechanism of resistance. Our results support the repurposing of the R-(+) enantiomer of propranolol with weak base chemotherapeutics to increase cytotoxicity and reduce the development of drug-resistant cell populations without the cardiovascular and other side effects associated with antagonism of β-ARs.
    Keywords:  angiosarcoma; doxorubicin; drug resistance; hemangiosarcoma; lysosome; propranolol
    DOI:  https://doi.org/10.3389/fonc.2020.614288
  23. Biochem J. 2021 Jan 28. pii: BCJ20200849. [Epub ahead of print]
      We have investigated the effects that iron limitation provokes in Saccharomyces cerevisiae exponential cultures. We have demonstrated that one primary response is the induction of bulk autophagy mediated by TORC1. Coherently, Atg13 became dephosphorylated whereas Atg1 appeared phosphorylated. The signal of iron deprivation requires Tor2/Ypk1 activity and the inactivation of Tor1 leading to Atg13 dephosphorylation, thus triggering the autophagy process. Iron replenishment in its turn, reduces autophagy flux through the AMPK Snf1 and the subsequent activity of the iron responsive transcription factor, Aft1. This signalling converges in Atg13 phosphorylation mediated by Tor1. Iron limitation promotes accumulation of trehalose and the increase in stress resistance leading to a quiescent state in cells. All these effects contribute to the extension of the chronological life, in a manner totally dependent on autophagy activation.
    Keywords:  Iron metabolism; SNF1/AMPK; TOR2/YPK1; TORC1; autophagy; cell signalling
    DOI:  https://doi.org/10.1042/BCJ20200849
  24. Exp Cell Res. 2021 Feb 11. pii: S0014-4827(21)00046-X. [Epub ahead of print] 112515
      Metabolite fluctuations following nutrient metabolism or environmental stresses impact various intracellular signaling networks and stress responses to maintain cellular and organismal homeostasis. It has been shown that subcellular organelles, such as the endoplasmic reticulum, the Golgi apparatus, lysosomes and mitochondria serve as crucial hubs linking alterations in metabolite levels to cellular responses. This role is coordinated by molecular machineries that are associated with the lipid membranes of organelles, which sense the fluctuations in specific metabolites and activate the appropriate signaling and effector molecules. Moreover, recent studies have demonstrated that membraneless organelles, such as the nucleolus and stress granules, are involved in the metabolic stress response. Metabolite-induced post-translational modifications appear to play an important role in this process. Here, we review the molecular mechanisms of metabolite sensing and metabolite-mediated stress responses through membrane-bound and membraneless organelles in mammalian cells.
    Keywords:  membrane; membraneless organelles; metabolic stress; metabolite; organelle; stress response
    DOI:  https://doi.org/10.1016/j.yexcr.2021.112515
  25. Cell Rep. 2021 Feb 16. pii: S2211-1247(21)00065-6. [Epub ahead of print]34(7): 108752
      Spermatogonial stem cells (SSCs) sustain spermatogenesis by balancing self-renewal and initiation of differentiation to produce progenitor spermatogonia committed to forming sperm. To define the regulatory logic among SSCs and progenitors, we performed single-cell RNA velocity analyses and validated results in vivo. A predominant quiescent SSC population spawns a small subset of cell-cycle-activated SSCs via mitogen-activated protein kinase (MAPK)/AKT signaling. Activated SSCs form early progenitors and mTORC1 inhibition drives activated SSC accumulation consistent with blockade to progenitor formation. Mechanistically, mTORC1 inhibition suppresses transcription among spermatogonia and specifically alters expression of insulin growth factor (IGF) signaling in early progenitors. Tex14-/- testes lacking intercellular bridges do not accumulate activated SSCs following mTORC1 inhibition, indicating that steady-state mTORC1 signaling drives activated SSCs to produce progenitor clones. These results are consistent with a model of SSC self-renewal dependent on interconversion between activated and quiescent SSCs, and mTORC1-dependent initiation of differentiation from SSCs to progenitor clones.
    Keywords:  RNA velocity; cell fate; single cell; spermatogenesis; subpopulations; testis; undifferentiated spermatogonia
    DOI:  https://doi.org/10.1016/j.celrep.2021.108752
  26. Immunometabolism. 2021 ;pii: e210007. [Epub ahead of print]3(1):
      Akt kinases translate various external cues into intracellular signals that control cell survival, proliferation, metabolism and differentiation. This review discusses the requirement for Akt and its targets in determining the fate and function of T cells. We discuss the importance of Akt at various stages of T cell development including β-selection during which Akt fulfills the energy requirements of highly proliferative DN3 cells. Akt also plays an integral role in CD8 T cell biology where its regulation of Foxo transcription factors and mTORC1 metabolic activity controls effector versus memory CD8 T cell differentiation. Finally, Akt promotes the differentiation of naïve CD4 T cells into Th1, Th17 and Tfh cells but inhibits the development of Treg cells. We also highlight how modulating Akt in T cells is a promising avenue for enhancing cell-based cancer immunotherapy.
    Keywords:  Akt; CD8 T cells; Foxo; T cell differentiation; Tfh; Th1; Th17; Treg; mTOR; thymocytes
    DOI:  https://doi.org/10.20900/immunometab20210007
  27. J Cell Biol. 2021 Apr 05. pii: e202010048. [Epub ahead of print]220(4):
      Endocytosed proteins can be delivered to lysosomes for degradation or recycled to either the trans-Golgi network or the plasma membrane. It remains poorly understood how the recycling versus degradation of cargoes is determined. Here, we show that multiple extracellular stimuli, including starvation, LPS, IL-6, and EGF treatment, can strongly inhibit endocytic recycling of multiple cargoes through the activation of MAPK11/14. The stress-induced kinases in turn directly phosphorylate SNX27, a key regulator of endocytic recycling, at serine 51 (Ser51). Phosphorylation of SNX27 at Ser51 alters the conformation of its cargo-binding pocket and decreases the interaction between SNX27 and cargo proteins, thereby inhibiting endocytic recycling. Our study indicates that endocytic recycling is highly dynamic and can crosstalk with cellular stress-signaling pathways. Suppression of endocytic recycling and enhancement of receptor lysosomal degradation serve as new mechanisms for cells to cope with stress and save energy.
    DOI:  https://doi.org/10.1083/jcb.202010048
  28. Front Cell Dev Biol. 2021 ;9 584388
      Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.
    Keywords:  TRP channels; brain pathology; calcium; homeostasis; neurodegenerative diseases; neuron; pH
    DOI:  https://doi.org/10.3389/fcell.2021.584388
  29. Anal Chem. 2021 Feb 15.
      As one of the most promising biomarkers for numerous malignant tumors, accurate and reliable reporting of Cathepsin B (CTSB) activity is of great significance to achieve efficient diagnosis of cancers at an early stage and predicting metastasis. Here, we report a vigorous ratiometric fluorescent method integrating a cancer-targeting recognition moiety with a remarkably large emission wavelength shift into a single matrix to report CTSB activity sensitively and specifically. As a proof of concept, we synthesized amine-rich carbon quantum dots (CQDs) with a blue fluorescence, which offered an efficient scaffolding to covalently assemble the nucleolin-targeting recognition nucleic acid aptamer AS1411 and a CTSB-cleavable peptide substrate Gly-Arg-Arg-Gly-Lys-Gly-Gly-Cys-COOH that tethered with a near-infrared (NIR) fluorophore chlorin e6 (Ce6-GRRGKGGC, Ce6-Pep), enabling a cancer-targeting and CTSB stimulus-responsive ratiometric nanoprobe AS1411-Ce6-CQDs. Owing to the efficient fluorescence resonance energy transfer (FRET) process from the CQDs to Ce6 inside the assembly of nanoprobe, the blue fluorescence of CQDs at ∼450 nm was remarkably quenched, along with an obvious NIR fluorescence enhancement of Ce6 at ∼650 nm. After selective entry into cancer cells via nucleolin-mediated endocytosis, the overexpressed CTSB in lysosome could cleave Ce6-Pep and trigger the Ce6 moiety dissociation from AS1411-Ce6-CQDs, thus leading to the termination of FRET process, achieving the efficient ratiometric fluorescence response toward endogenous CTSB with a remarkably large emission wavelength shift of ∼200 nm from NIR to blue emission region. Notably, the nanoprobe AS1411-Ce6-CQDs exhibited an excellent specificity for ratiometric fluorescent sensing of CTSB activity with an ultralow detection limit of 0.096 ng/mL, demonstrating its promising use for early precise cancer diagnosis in the near future.
    DOI:  https://doi.org/10.1021/acs.analchem.0c05046