bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2021–10–17
39 papers selected by
Stephanie Fernandes, Max Planck Institute for Biology of Ageing



  1. Int J Mol Sci. 2021 Sep 28. pii: 10492. [Epub ahead of print]22(19):
      The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking.
    Keywords:  Ca2+; P2X4; lysosomes
    DOI:  https://doi.org/10.3390/ijms221910492
  2. Int J Mol Sci. 2021 Sep 27. pii: 10416. [Epub ahead of print]22(19):
      Cholesterol and fatty acids are essential lipids that are critical for membrane biosynthesis and fetal organ development. Cholesteryl esters (CE) are degraded by hormone-sensitive lipase (HSL) in the cytosol and by lysosomal acid lipase (LAL) in the lysosome. Impaired LAL or HSL activity causes rare pathologies in humans, with HSL deficiency presenting less severe clinical manifestations. The infantile form of LAL deficiency, a lysosomal lipid storage disorder, leads to premature death. However, the importance of defective lysosomal CE degradation and its consequences during early life are incompletely understood. We therefore investigated how defective CE catabolism affects fetus and infant maturation using Lal and Hsl knockout (-/-) mouse models. This study demonstrates that defective lysosomal but not neutral lipolysis alters placental and fetal cholesterol homeostasis and exhibits an initial disease pathology already in utero as Lal-/- fetuses accumulate hepatic lysosomal lipids. Immediately after birth, LAL deficiency exacerbates with massive hepatic lysosomal lipid accumulation, which continues to worsen into young adulthood. Our data highlight the crucial role of LAL during early development, with the first weeks after birth being critical for aggravating LAL deficiency.
    Keywords:  cholesterol catabolism; development; lysosomal acid lipase; lysosomal storage disorder; mutant mouse models; placenta
    DOI:  https://doi.org/10.3390/ijms221910416
  3. Cell Death Dis. 2021 Oct 13. 12(10): 939
      Lysosome-autophagosome fusion is critical to autophagosome maturation. Although several proteins that regulate this fusion process have been identified, the prefusion architecture and its regulation remain unclear. Herein, we show that upon stimulation, multiple lysosomes form clusters around individual autophagosomes, setting the stage for membrane fusion. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein on lysosomes-vesicle-associated membrane protein 8 (VAMP8)-plays an important role in forming this prefusion state of lysosomal clusters. To study the potential role of phosphorylation on spontaneous fusion, we investigated the effect of phosphorylation of C-terminal residues of VAMP8. Using a phosphorylation mimic, we observed a decrease of fusion in an ensemble lipid mixing assay and an increase of unfused lysosomes associated with autophagosomes. These results suggest that phosphorylation not only reduces spontaneous fusion for minimizing autophagic flux under normal conditions, but also preassembles multiple lysosomes to increase the fusion probability for resuming autophagy upon stimulation. VAMP8 phosphorylation may thus play an important role in chemotherapy drug resistance by influencing autophagosome maturation.
    DOI:  https://doi.org/10.1038/s41419-021-04243-0
  4. Autophagy. 2021 Oct 13. 1-19
      The dynein motor protein complex is required for retrograde transport but the functions of the intermediate-light chains that form the cargo-binding complex are not elucidated and the importance of individual subunits in maintaining cellular homeostasis is unknown. Here, using mRNA arrays and protein analysis, we show that the dynein subunit, DYNC1LI2 (dynein, cytoplasmic 1 light intermediate chain 2) is downregulated in cystinosis, a lysosomal storage disorder caused by genetic defects in CTNS (cystinosin, lysosomal cystine transporter). Reconstitution of DYNC1LI2 expression in ctns-/- cells reestablished endolysosomal dynamics. Defective vesicular trafficking in cystinotic cells was rescued by DYNC1LI2 expression which correlated with decreased endoplasmic reticulum stress manifested as decreased expression levels of the chaperone HSPA5/GRP78, and the transcription factors ATF4 and DDIT3/CHOP. Mitochondrial fragmentation, membrane potential and endolysosomal-mitochondrial association in cystinotic cells were rescued by DYNC1LI2. Survival of cystinotic cells to oxidative stress was increased by DYNC1LI2 reconstitution but not by its paralog DYNC1LI1, which also failed to decrease ER stress and mitochondrial fragmentation. DYNC1LI2 expression rescued the localization of the chaperone-mediated autophagy (CMA) receptor LAMP2A, CMA activity, cellular homeostasis and LRP2/megalin expression in cystinotic proximal tubule cells, the primary cell type affected in cystinosis. DYNC1LI2 failed to rescue phenotypes in cystinotic cells when LAMP2A was downregulated or when co-expressed with dominant negative (DN) RAB7 or DN-RAB11, which impaired LAMP2A trafficking. DYNC1LI2 emerges as a regulator of cellular homeostasis and potential target to repair underlying trafficking and CMA in cystinosis, a mechanism that is not restored by lysosomal cystine depletion therapies.Abbreviations: ACTB: actin, beta; ATF4: activating transcription factor 4; CMA: chaperone-mediated autophagy; DYNC1LI1: dynein cytoplasmic 1 light intermediate chain 1; DYNC1LI2: dynein cytoplasmic 1 light intermediate chain 2; ER: endoplasmic reticulum; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; LIC: light-intermediate chains; LRP2/Megalin: LDL receptor related protein 2; PTCs: proximal tubule cells; RAB: RAB, member RAS oncogene family; RAB11FIP3: RAB11 family interacting protein 3; RILP: Rab interacting lysosomal protein.
    Keywords:  Lysosomal storage disorder; megalin; proximal tubule cell; rab gtpases; trafficking
    DOI:  https://doi.org/10.1080/15548627.2021.1971937
  5. Eur J Immunol. 2021 Oct 14.
      Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in anti-tumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system. This article is protected by copyright. All rights reserved.
    Keywords:  Immunometabolism; cancer treatment; immunotherapy; mTORC1; tumor microenvironment
    DOI:  https://doi.org/10.1002/eji.202149270
  6. J Biol Chem. 2021 Oct 08. pii: S0021-9258(21)01096-6. [Epub ahead of print] 101291
      Metabolic dysfunction is a major driver of tumorigenesis. The serine/threonine kinase mTOR constitutes a key central regulator of metabolic pathways promoting cancer cell proliferation and survival. mTOR activity is regulated by metabolic sensors as well as by numerous factors comprising the PTEN/PI3K/AKT canonical pathway, which are often mutated in cancer. However, some cancers displaying constitutively active mTOR do not carry alterations within this canonical pathway, suggesting alternative modes of mTOR regulation. Since DEPTOR, an endogenous inhibitor of mTOR, was previously found to modulate both mTOR complexe 1 and 2, we investigated the different post-transltionnal modification that could affect its inhibitory function. We found that tyrosine 289 phosphorylation of DEPTOR impairs its interaction with mTOR, leading to increased mTOR activation. Using proximity biotinylation assays, we identified SYK (Spleen tyrosine kinase) as a kinase involved in DEPTOR tyrosine 289 phosphorylation in an ephrin (EPH) receptor-dependent manner. Altogether, our work reveals that phosphorylation of tyrosine 289 of DEPTOR represents a novel molecular switch involved in the regulation of both mTORC1 and mTORC2.
    Keywords:  DEPTOR; EPHB2; mTOR; tyrosine phosphorylation
    DOI:  https://doi.org/10.1016/j.jbc.2021.101291
  7. Brain Commun. 2021 ;3(4): fcab222
      The mechanistic target of rapamycin signalling pathway serves as a ubiquitous regulator of cell metabolism, growth, proliferation and survival. The main cellular activity of the mechanistic target of rapamycin cascade funnels through mechanistic target of rapamycin complex 1, which is inhibited by rapamycin, a macrolide compound produced by the bacterium Streptomyces hygroscopicus. Pathogenic variants in genes encoding upstream regulators of mechanistic target of rapamycin complex 1 cause epilepsies and neurodevelopmental disorders. Tuberous sclerosis complex is a multisystem disorder caused by mutations in mechanistic target of rapamycin regulators TSC1 or TSC2, with prominent neurological manifestations including epilepsy, focal cortical dysplasia and neuropsychiatric disorders. Focal cortical dysplasia type II results from somatic brain mutations in mechanistic target of rapamycin pathway activators MTOR, AKT3, PIK3CA and RHEB and is a major cause of drug-resistant epilepsy. DEPDC5, NPRL2 and NPRL3 code for subunits of the GTPase-activating protein (GAP) activity towards Rags 1 complex (GATOR1), the principal amino acid-sensing regulator of mechanistic target of rapamycin complex 1. Germline pathogenic variants in GATOR1 genes cause non-lesional focal epilepsies and epilepsies associated with malformations of cortical development. Collectively, the mTORopathies are characterized by excessive mechanistic target of rapamycin pathway activation and drug-resistant epilepsy. In the first large-scale precision medicine trial in a genetically mediated epilepsy, everolimus (a synthetic analogue of rapamycin) was effective at reducing seizure frequency in people with tuberous sclerosis complex. Rapamycin reduced seizures in rodent models of DEPDC5-related epilepsy and focal cortical dysplasia type II. This review outlines a personalized medicine approach to the management of epilepsies in the mTORopathies. We advocate for early diagnostic sequencing of mechanistic target of rapamycin pathway genes in drug-resistant epilepsy, as identification of a pathogenic variant may point to an occult dysplasia in apparently non-lesional epilepsy or may uncover important prognostic information including, an increased risk of sudden unexpected death in epilepsy in the GATORopathies or favourable epilepsy surgery outcomes in focal cortical dysplasia type II due to somatic brain mutations. Lastly, we discuss the potential therapeutic application of mechanistic target of rapamycin inhibitors for drug-resistant seizures in GATOR1-related epilepsies and focal cortical dysplasia type II.
    Keywords:  GATOR1-related epilepsies; everolimus; focal cortical dysplasia type II; the mTORopathies; tuberous sclerosis complex
    DOI:  https://doi.org/10.1093/braincomms/fcab222
  8. Int J Mol Sci. 2021 Sep 30. pii: 10635. [Epub ahead of print]22(19):
      Lysosomal degradation, the common destination of autophagy and endocytosis, is one of the most important elements of eukaryotic metabolism. The small GTPases Rab39A and B are potential new effectors of this pathway, as their malfunction is implicated in severe human diseases like cancer and neurodegeneration. In this study, the lysosomal regulatory role of the single Drosophila Rab39 ortholog was characterized, providing valuable insight into the potential cell biological mechanisms mediated by these proteins. Using a de novo CRISPR-generated rab39 mutant, we found no failure in the early steps of endocytosis and autophagy. On the contrary, we found that Rab39 mutant nephrocytes internalize and degrade endocytic cargo at a higher rate compared to control cells. In addition, Rab39 mutant fat body cells contain small yet functional autolysosomes without lysosomal fusion defect. Our data identify Drosophila Rab39 as a negative regulator of lysosomal clearance during both endocytosis and autophagy.
    Keywords:  Drosophila; Rab39; autophagy; endocytosis; lysosomes
    DOI:  https://doi.org/10.3390/ijms221910635
  9. Angew Chem Int Ed Engl. 2021 Oct 13.
      Lysosome-relevant cell death induced by lysosomal membrane permeabilization (LMP) has recently attracted increasing attention. However, nearly no studies show that currently available LMP inducers can evoke immunogenic cell death (ICD) or convert immunologically cold tumors to hot. Herein, we report a LMP inducer named TPE-Py-pYK(TPP)pY, which can respond to alkaline phosphatase (ALP), leading to formation of nanoassembies along with fluorescence and singlet oxygen turn-on. TPE-Py-pYK(TPP)pY tends to accumulate in ALP-overexpressed cancer cell lysosomes as well as induce LMP and rupture of lysosomal membranes to massively evoke ICD. Such LMP-induced ICD effectively converts immunologically cold tumors to hot as evidenced by abundant CD8+ and CD4+ T cells infiltration into the cold tumors. Exposure of ALP-catalyzed nanoassemblies in cancer cell lysosomes to light further intensifies the processes of LMP, ICD and cold-to-hot tumor conversion. This work thus builds a new bridge between lysosome-relevant cell death and cancer immunotherapy.
    Keywords:  alkaline phosphatase; enzyme-instructed self-assembly; immunologically cold/hot tumors; lysosomal membrane permeabilization; supramolecular self-assembling peptide
    DOI:  https://doi.org/10.1002/anie.202110512
  10. Front Mol Neurosci. 2021 ;14 719100
      A typical neuron consists of a soma, a single axon with numerous nerve terminals, and multiple dendritic trunks with numerous branches. Each of the 100 billion neurons in the brain has on average 7,000 synaptic connections to other neurons. The neuronal endolysosomal compartments for the degradation of axonal and dendritic waste are located in the soma region. That means that all autophagosomal and endosomal cargos from 7,000 synaptic connections must be transported to the soma region for degradation. For that reason, neuronal endolysosomal degradation is an extraordinarily demanding and dynamic event, and thus is highly susceptible to many pathological conditions. Dysfunction in the endolysosomal trafficking pathways occurs in virtually all neurodegenerative diseases. Most lysosomal storage disorders (LSDs) with defects in the endolysosomal system preferentially affect the central nervous system (CNS). Recently, significant progress has been made in understanding the role that the endolysosomal trafficking pathways play after brain ischemia. Brain ischemia damages the membrane fusion machinery co-operated by N-ethylmaleimide sensitive factor (NSF), soluble NSF attachment protein (SNAP), and soluble NSF attachment protein receptors (SNAREs), thus interrupting the membrane-to-membrane fusion between the late endosome and terminal lysosome. This interruption obstructs all incoming traffic. Consequently, both the size and number of endolysosomal structures, autophagosomes, early endosomes, and intra-neuronal protein aggregates are increased extensively in post-ischemic neurons. This cascade of events eventually damages the endolysosomal structures to release hydrolases leading to ischemic brain injury. Gene knockout and selective inhibition of key endolysosomal cathepsins protects the brain from ischemic injury. This review aims to provide an update of the current knowledge, future research directions, and the clinical implications regarding the critical role of the neuronal endolysosomal trafficking pathways in ischemic brain injury.
    Keywords:  N-ethylmaleimide sensitive fusion protein; autophagic flux; autophagosome; brain ischemia-reperfusion injury; cathepsin B; early endosome; late endosome; membrane trafficking
    DOI:  https://doi.org/10.3389/fnmol.2021.719100
  11. Dev Cell. 2021 Oct 11. pii: S1534-5807(21)00735-8. [Epub ahead of print]56(19): 2681-2682
      Understanding how nutrient-sensitive signaling pathways regulate development and aging is an active area of research. In this issue of Developmental Cell,Zhu and colleagues (2021) identify a specific monomethylated branched-chain fatty acid that overrides nutrient deprivation signaling and activates mTORC1 in C. elegans and mammalian cells.
    DOI:  https://doi.org/10.1016/j.devcel.2021.09.017
  12. Adv Mater. 2021 Oct 10. e2104704
      Biomolecular condensates have been demonstrated as a ubiquitous phenomenon in biological systems and play a crucial role in controlling cellular functions. However, the spatiotemporal construction of artificial biomolecular condensates with functions remains challenging and has been less explored. Herein, a general approach is reported to construct biomolecular condensates (e.g., hydrogel) in the lysosome of living cells for cancer therapy and address multiple drug resistance induced by lysosome sequestration. Aromatic-motif-appended pH-responsive hexapeptide (LTP) derived from natural insulin can be uptaken by cancer cells mainly through caveolae-dependent endocytosis, ensuring the proton-triggered phase transformation (solution to hydrogel) of LTP inside the lysosome specifically. Lysosomal hydrogelation further leads to enlargement of the lysosome in cancer cells and increases the permeability of the lysosome, resulting in cancer cell death. Importantly, lysosomal assemblies can significantly improve the efficiency of current chemotherapy drugs toward multidrug resistance (MDR) cells in vitro and in xenograft tumor models. As an example of functional artificial condensates in lysosomes, this work provides a new strategy for controlling functional condensates formation precisely in the organelles of living cells and addressing MDR in cancer therapy.
    Keywords:  hydrogels; lysosomal membrane permeabilization; multidrug resistance; peptides; self-assembly
    DOI:  https://doi.org/10.1002/adma.202104704
  13. J Cell Physiol. 2021 Oct 12.
      Astrocytes are pivotal responders to alterations of extracellular pH, primarily by regulation of their principal acid-base transporter, the membrane-bound electrogenic Na+ /bicarbonate cotransporter 1 (NBCe1). Here, we describe amammalian target of rapamycin (mTOR)-dependent and NBCe1-mediated astroglial response to extracellular acidosis. Using primary mouse cortical astrocytes, we investigated the effect of long-term extracellular metabolic acidosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant increase of NBCe1-mediated recovery of intracellular pH from acidification in WT astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Acidosis-induced upregulation of NBCe1 activity was prevented following inhibition of mTOR signaling by rapamycin. Yet, during acidosis or following exposure of astrocytes to rapamycin, surface protein abundance of NBCe1 remained -unchanged. Mutational analysis in HeLa cells suggested that NBCe1 activity was dependent on phosphorylation state of Ser245 , a residue conserved in all NBCe1 variants. Moreover, phosphorylation state of Ser245 is regulated by mTOR and is inversely correlated with NBCe1 transport activity. Our results identify pSer245 as a novel regulator of NBCe1 functional expression. We propose that context-dependent and mTOR-mediated multisite phosphorylation of serine residues of NBCe1 is likely to be a potent mechanism contributing to the response of astrocytes to acid/base challenges during pathophysiological conditions.
    Keywords:  acid-base; acidosis; astrocytes; pH; signaling
    DOI:  https://doi.org/10.1002/jcp.30601
  14. Cell Mol Gastroenterol Hepatol. 2021 Oct 06. pii: S2352-345X(21)00203-4. [Epub ahead of print]
       BACKGROUND: Recently, novel inborn errors of metabolism were identified due to mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models and a mouse model.
    METHODS AND RESULTS: Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very-low density lipoprotein (VLDL) range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and iPSC-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared to controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, or elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity.
    CONCLUSION: Our data suggest that the hypercholesterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. As this pathway remains understudied and its regulation largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease.
    DOI:  https://doi.org/10.1016/j.jcmgh.2021.09.013
  15. Mol Genet Metab Rep. 2021 Dec;29 100803
      Elevated serum chitotriosidase (CHITO) is an indication of macrophage activation, and its capacity have been explored as a marker of inflammation in a number of disease states. For over a decade, CHITO plasma levels have been used by clinicians as a biomarker of inflammation in the lysosomal disease, Gaucher disease, including monitoring response to therapies in patients with Gaucher disease type I. Although it is becoming increasingly recognized that inflammation is a prominent component of many lysosomal diseases, the relation of CHITO levels to disease burden has not been well-characterized in the large majority of lysosomal diseases. Moreover, the role of CHITO in lysosomal diseases that affect the central nervous system (CNS) has not been systematically studied. In this study, one hundred and thirty-four specimens of CSF and serum were collected from 34 patients with lysosomal diseases affecting the CNS. This study included patients with GM1-gangliosidosis, GM2-gangliosidosis, mucopolysaccharidoses (MPS), multiple sulfatase deficiency and Gaucher disease. CHITO levels in the CSF were significantly higher in patients with more rapidly progressing severe neurological impairment: GM1-gangliosidosis vs MPS (p < 0.0001); GM2-gangliosidosis vs MPS (p < 0.0001). CHITO levels were higher in patients with the more severe phenotypes compared to milder phenotypes in GM1-gangliosidosis and GM2-gangliosidosis (serum CHITO in GM1-gangliosidosis infantile vs juvenile p = 0.025; CSF CHITO in Tay-Sachs infantile vs Tay-Sachs late-onset p < 0.0001). Moreover, higher CHITO levels in the CSF were significantly associated with lower cognitive test scores in patients with GM1-gangliosidosis, GM2-gangliosidosis, and MPS (p = 1.12*10-5, R2 = 0.72). Patients with infantile GM1-gangliosidosis showed increasing CSF CHITO over time, suggesting that CSF CHITO reflects disease progression and a possible surrogate endpoint for future clinical trials with infantile GM1-gangliosidosis. In summary, these results support the use of CSF CHITO to diagnose between different disease phenotypes and as a valuable tool for monitoring disease progression in patients. These results necessitate the inclusion of CHITO as an exploratory biomarker for clinical trials.
    Keywords:  Chitotriosidase; GM1-gangliosidosis; GM2-gangliosidosis; Gaucher; Lysosomal diseases; Mucopolysaccharidosis
    DOI:  https://doi.org/10.1016/j.ymgmr.2021.100803
  16. Cell Rep. 2021 Oct 12. pii: S2211-1247(21)01260-2. [Epub ahead of print]37(2): 109800
      Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.
    Keywords:  CB(1) receptor; Endocannabinoid; Food intake; GABA; Glutamate; Melanocortin; POMC neuron; mTOR
    DOI:  https://doi.org/10.1016/j.celrep.2021.109800
  17. ACS Chem Neurosci. 2021 Oct 15.
      In Alzheimer's disease (AD), damaged Aβ clearance contributes to elevated levels of Aβ that cause a series of cytotoxic cascade reactions. Thus, targeting Aβ clearance has now been considered a valid therapeutic approach for AD. Cellular uptake and degradation are important mechanisms for Aβ clearance, which are mainly performed by the endosomal-autophagic-lysosomal (EAL) pathway. Our previous study showed that OAB-14, a novel small molecule designed with bexarotene as the lead compound, treatment for 3 months significantly alleviated cognitive disorders and remarkably reduced the deposition of Aβ without affecting its production in APP/PS1 transgenic mice. Here, we further revealed that enhancement of the EAL activity is one of the mechanisms that increases Aβ clearance after OAB-14 administration for 3 months. OAB-14 facilitates receptor-mediated endocytosis and restores autophagy flux via the AMPK/mTOR pathway. Meanwhile, OAB-14 enhances the lysosomal activity, and reduced Aβ accumulation in lysosomes was observed in OAB-14-treated AD mice. These results suggest that OAB-14 may promote Aβ clearance in lysosomes by alleviating the EAL dysfunction in AD mice.
    Keywords:  Alzheimer’s disease; OAB-14; amyloid-β; clearance; endosomal-autophagic-lysosomal; memory impairment
    DOI:  https://doi.org/10.1021/acschemneuro.1c00209
  18. ACS Chem Biol. 2021 Oct 14.
      Phagocytosis is an important physiological process, which, in higher organisms, is a means of fighting infections and clearing cellular debris. During phagocytosis, detrimental foreign particles (e.g. pathogens and apoptotic cells) are engulfed by phagocytes (e.g. macrophages), enclosed in membrane-bound vesicles called phagosomes, and transported to the lysosome for eventual detoxification. During this well-choreographed process, the nascent phagosome (also called early phagosome, EP) undergoes a series of spatiotemporally regulated changes in its protein and lipid composition and matures into a late phagosome (LP), which subsequently fuses with the lysosomal membrane to form the phagolysosome. While several elegant proteomic studies have identified the role of unique proteins during phagosomal maturation, the corresponding lipidomic studies are sparse. Recently, we reported a comparative lipidomic analysis between EPs and LPs and showed that ceramides are enriched on the LPs. Further, we found that this ceramide accumulation on LPs was orchestrated by ceramide synthase 2, inhibition of which hampers phagosomal maturation. Following up on this study, here, using biochemical assays, we first show that the increased ceramidase activity on EPs also significantly contributes to the accumulation of ceramides on LPs. Next, leveraging lipidomics, we show that de novo ceramide synthesis does not significantly contribute to the ceramide accumulation on LPs, while concomitant to increased ceramides, glucosylceramides are substantially elevated on LPs. We validate this interesting finding using biochemical assays and show that LPs indeed have heightened glucosylceramide synthase activity. Taken together, our studies provide interesting insights and possible new roles of sphingolipid metabolism during phagosomal maturation.
    DOI:  https://doi.org/10.1021/acschembio.1c00393
  19. Sci Rep. 2021 Oct 15. 11(1): 20513
      Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by an arylsulfatase A (ARSA) deficiency and characterized by severe neurological symptoms resulting from demyelination within the central and peripheral nervous systems. We investigated the feasibility and efficacy of intrathecal administration of a type 9 adeno-associated viral vector encoding ARSA (AAV9/ARSA) for the treatment of 6-week-old MLD model mice, which are presymptomatic, and 1-year-old mice, which exhibit neurological abnormalities. Immunohistochemical analysis following AAV9/ARSA administration showed ARSA expression within the brain, with highest activities in the cerebellum and olfactory bulbs. In mice treated at 1 year, alcian blue staining and quantitative analysis revealed significant decreases in stored sulfatide. Behaviorally, mice treated at 1 year showed no improvement in their ability to traverse narrow balance beams as compared to untreated mice. By contrast, MLD mice treated at 6 weeks showed significant decreases in stored sulfatide throughout the entire brain and improved ability to traverse narrow balance beams. These findings suggest intrathecal administration of an AAV9/ARSA vector is a promising approach to treating genetic diseases of the central nervous system, including MLD, though it may be essential to begin therapy before the onset of neurological symptoms.
    DOI:  https://doi.org/10.1038/s41598-021-99979-2
  20. J Neurosci. 2021 Oct 11. pii: JN-RM-0556-21. [Epub ahead of print]
      TSNARE1, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of TSNARE1 and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of TSNARE1 expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrates that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7+ late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of a Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking.SIGNIFICANCE STATEMENT:Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical towards understanding how their dysfunction contributes to schizophrenia pathogenesis. TSNARE1 is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of TSNARE1 and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.
    DOI:  https://doi.org/10.1523/JNEUROSCI.0556-21.2021
  21. World J Biol Chem. 2021 Sep 27. 12(5): 70-86
      The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of research dedicated to finding the culprits of this debilitating disease. Skeletal muscle is arguably the most important contributor to glucose disposal making it a clear target in insulin resistance and T2D research. Within skeletal muscle there is a clear link to metabolic dysregulation during the progression of T2D but the determination of culprits vs consequences of the disease has been elusive. Emerging evidence in skeletal muscle implicates influential cross talk between a key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and its associated complexes (mTORC1 and mTORC2), and the well-described canonical signaling for insulin-stimulated glucose uptake. This new understanding of cellular signaling crosstalk has blurred the lines of what is a culprit and what is a consequence with regard to insulin resistance. Here, we briefly review the most recent understanding of insulin signaling in skeletal muscle, and how anabolic responses favoring anabolism directly impact cellular glucose disposal. This review highlights key cross-over interactions between protein and glucose regulatory pathways and the implications this may have for the design of new therapeutic targets for the control of glucoregulatory function in skeletal muscle.
    Keywords:  Glucose regulation; Glucose uptake; Insulin resistance; Insulin signaling; Mammalian target of rapamycin; Skeletal muscle
    DOI:  https://doi.org/10.4331/wjbc.v12.i5.70
  22. Curr Neuropharmacol. 2021 Oct 05.
       BACKGROUND: The piriform cortex known as area tempestas owns a high propensity to trigger limbic epileptic seizures. Recent studies on human patients indicate that a resection containing the piriform cortex produces a marked improvement in patients suffering from intractable limbic seizures. This calls for looking back pharmacological and anatomical data on area tempestas. Within the piriform cortex status epilepticus can be induced by impairing desensitization of AMPA receptors. The mechanistic target of rapamycin complex1 (mTORC1) is a promising candidate. <P> Objective: The present perspective joins the novel role of the piriform cortex with recent evidence on the modulation of AMPA receptors under the influence of mTORC1. This is based on recent evidence and preliminary data, which lead to formulate an interaction between mTORC1 and AMPA receptors to mitigate the onset of long-lasting, self-sustaining, neurotoxic status epilepticus. <P> Methods: The perspective grounds its method on recent literature along with the actual experimental procedure to elicit status epilepticus from the piriform cortex and the method to administer the mTORC1 inhibitor rapamycin to mitigate seizure expression and brain damage. <P> Results: The available and present perspective converge to show that rapamycin may disrupt the seizure circuitry initiated in the piriform cortex to mitigate seizure duration, severity, and brain damage. <P> Conclusions: The perspective offered by this manuscript provides a novel scenario to understand refractory epilepsy and self-sustaining status epilepticus. This is expected to provide a beneficial outcome in patients suffering from temporal lobe epilepsy.
    Keywords:  area tempestas; autophagy; mTOR; piriform cortex; rapamycin; status epilepticus
    DOI:  https://doi.org/10.2174/1570159X19666211005152618
  23. Int J Mol Sci. 2021 Oct 08. pii: 10887. [Epub ahead of print]22(19):
      Pompe disease (OMIM#232300) is an autosomal recessive lysosomal storage disorder caused by mutations in the GAA gene. According to public mutation databases, more than 679 pathogenic variants have been described in GAA, none of which are associated with mobile genetic elements. In this article, we report a novel molecular genetic cause of Pompe disease, which could be hardly detected using routine molecular genetic analysis. Whole genome sequencing followed by comprehensive functional analysis allowed us to discover and characterize a complex mobile genetic element insertion deep in the intron 15 of the GAA gene in a patient with infantile onset Pompe disease.
    Keywords:  L1; SVA; functional analysis; lysosomal storage disease; missplicing; retrotransposon; transcription termination; transposable elements; transposon insertion
    DOI:  https://doi.org/10.3390/ijms221910887
  24. Int J Mol Sci. 2021 Sep 29. pii: 10515. [Epub ahead of print]22(19):
      TMEM175 (transmembrane protein 175) coding sequence variants are associated with increased risk of Parkinson's disease. TMEM175 is the ubiquitous lysosomal K+ channel regulated by growth factor receptor signaling and direct interaction with protein kinase B (PKB/Akt). In the present study, we show that the expression of mouse TMEM175 results in very small K+ currents through the plasma membrane in Xenopus laevis oocytes, in good accordance with the previously reported intracellular localization of the channel. However, the application of the dynamin inhibitor compounds, dynasore or dyngo-4a, substantially increased TMEM175 currents measured by the two-electrode voltage clamp method. TMEM175 was more permeable to cesium than potassium ions, voltage-dependently blocked by 4-aminopyridine (4-AP), and slightly inhibited by extracellular acidification. Immunocytochemistry experiments indicated that dyngo-4a increased the amount of epitope-tagged TMEM175 channel on the cell surface. The coexpression of dominant-negative dynamin, and the inhibition of clathrin- or caveolin-dependent endocytosis increased TMEM175 current much less than dynasore. Therefore, dynamin-independent pharmacological effects of dynasore may also contribute to the action on the channel. TMEM175 current rapidly decays after the withdrawal of dynasore, raising the possibility that an efficient internalization mechanism removes the channel from the plasma membrane. Dyngo-4a induced about 20-fold larger TMEM175 currents than the PKB activator SC79, or the coexpression of a constitutively active mutant PKB with the channel. In contrast, the allosteric PKB inhibitor MK2206 diminished the TMEM175 current in the presence of dyngo-4a. These data suggest that, in addition to the lysosomes, PKB-dependent regulation also influences TMEM175 current in the plasma membrane.
    Keywords:  SC79; Xenopus laevis; dynasore; electrophysiology; endocytosis; endosome; lysosome; plasma membrane; potassium channel
    DOI:  https://doi.org/10.3390/ijms221910515
  25. Behav Brain Res. 2021 Oct 09. pii: S0166-4328(21)00513-1. [Epub ahead of print]417 113625
      Inflammation plays a key role in the pathogenesis of the major depressive disorder. Namely, neuroinflammation can induce the production of neuroactive metabolites that interfere with N-methyl-D-aspartate receptors (NMDAR)-mediated glutamatergic neurotransmission and contribute to depressive-like behaviour. On the other hand, mammalian target of rapamycin (mTOR) activity with synaptogenic effects is the main mediator of antidepressant effects of several potent NMDAR antagonists. In this study, we investigated the specific role of GluN2A subunits of NMDAR on the activity of mTOR signaling and behaviour in lipopolysaccharide (LPS)-induces model of depression. The results showed that mice lacking GluN2A subunit did not display depressive-like behavior after the immune challenge, opposite to LPS-treated wild-type mice. Specifically, in GluN2A knockout mice, we estimated the activity of the mTOR pathway in the hippocampus and prefrontal cortex (PFC) by measuring synaptic levels of upstream regulators (p-Akt, p-ERK, and p-GSK3β) and downstream effectors (p-mTOR, and p-p70S6K) of mTOR activity. In addition, we assessed the changes in the levels of two important synaptic markers, GluA1 and PSD-95. Contrary to downregulated mTOR signaling and decreased synaptic markers in LPS-treated wild-type animals, the resilience of GluN2A KO mice to depressive-like behaviour was paralleled with sustained mTOR signaling activity synaptic stability in hippocampus and PFC. Finally, we disclosed that resistance of GluN2A knockouts to LPS-induced depressive-like behavior was ERK-dependent. These findings demonstrate that GluN2A-ERK-mTOR signaling is a vulnerability factor of inflammation-related depressive behaviour, making this signaling pathway the promising target for developing novel antidepressants.
    Keywords:  GluN2A knockout mice; Glutamatergic neurotransmission; LPS-induced depression; Synaptosomes; mTOR signaling
    DOI:  https://doi.org/10.1016/j.bbr.2021.113625
  26. Stem Cell Reports. 2021 Sep 30. pii: S2213-6711(21)00486-0. [Epub ahead of print]
      Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell-derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell-derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis.
    Keywords:  dystroglycanopathies; iPS cells; in vitro modeling; skeletal muscle
    DOI:  https://doi.org/10.1016/j.stemcr.2021.09.009
  27. ACS Chem Neurosci. 2021 Oct 15.
      Disrupted cellular trafficking and transport processes are hallmarks of many neurodegenerative disorders (NDs). Recently, efforts have been made toward developing and implementing experimental platforms to identify small molecules that may help restore normative trafficking functions. There have been a number of successes in targeting endomembrane trafficking with the identification of compounds that restore cell viability through rescue of protein transport and trafficking. Here, we describe some of the experimental platforms implemented for small molecule screening efforts for rescue of trafficking defects in neurodegeneration. A survey of phenotypically active small molecules identified to date is provided, including a summary of medicinal chemistry efforts and insights into putative targets and mechanisms of action. In particular, emphasis is put on ligands that demonstrate activity in more than one model of neurodegeneration as retention of phenotypic activity across ND models suggests conservation of biological targets across NDs.
    Keywords:  Membrane trafficking; autophagy; endosomes; lysosomes; neurodegeneration; phenotypic activity; protein sorting; small molecule screening; trafficking defects
    DOI:  https://doi.org/10.1021/acschemneuro.1c00524
  28. Exp Mol Med. 2021 Oct 15.
      Fabry disease is an X-linked lysosomal storage disease caused by a mutation in the galactosidase alpha (GLA) gene. Despite advances in therapeutic technologies, the lack of humanized experimental models of Fabry disease has limited the development of new therapies to cure the disease. Herein, we modeled Fabry disease using human inducible pluripotent stem cell (iPSC)-derived kidney organoids and the CRISPR-Cas9 genome-editing system. GLA-mutant human kidney organoids revealed deformed podocytes and tubular cells with accumulation of globotriaosylceramide (Gb3). Ultrastructural analysis showed abundant electron-dense granular deposits and electron-dense lamellate lipid-like deposits that formed concentric bodies (zebra bodies) in the cytoplasm of podocytes and tubules. The oxidative stress level was increased in GLA-mutant kidney organoids, and the increase was accompanied by apoptosis. Enzyme replacement treatment (ERT) with recombinant human α-Gal A decreased the Gb3 accumulation and oxidative stress, which resulted in amelioration of the deformed cellular structure of the GLA-mutant kidney organoids. Transcription profile analyses showed decreased glutathione (GSH) metabolism in GLA-mutant kidney organoids. GSH replacement treatment decreased oxidative stress and attenuated the structural deformity of the GLA-mutant kidney organoids. GSH treatment also increased the expression of podocyte and tubular markers and decreased apoptosis. In conclusion, GLA-mutant kidney organoids derived from human iPSCs are valuable tools for studying the mechanisms and developing novel therapeutic alternatives for Fabry disease.
    DOI:  https://doi.org/10.1038/s12276-021-00683-y
  29. Elife. 2021 Oct 11. pii: e60478. [Epub ahead of print]10
      Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an mTORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease (IBD) and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.
    Keywords:  immunology; inflammation; mouse
    DOI:  https://doi.org/10.7554/eLife.60478
  30. Int J Mol Sci. 2021 Sep 22. pii: 10208. [Epub ahead of print]22(19):
      Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.
    Keywords:  Nedd4; Npr1; Target of Rapamycin Complex 1; acidic patch; arginine; endocytosis; transporter; ubiquitin; α-arrestin
    DOI:  https://doi.org/10.3390/ijms221910208
  31. Cell Rep. 2021 Oct 12. pii: S2211-1247(21)01295-X. [Epub ahead of print]37(2): 109831
      Spinocerebellar ataxias (SCAs) are a group of genetic diseases characterized by progressive ataxia and neurodegeneration, often in cerebellar Purkinje neurons. A SCA1 mouse model, Pcp2-ATXN1[30Q]D776, has severe ataxia in absence of progressive Purkinje neuron degeneration and death. Previous RNA-seq analyses identify cerebellar upregulation of the peptide hormone cholecystokinin (Cck) in Pcp2-ATXN1[30Q]D776 mice. Importantly, absence of Cck1 receptor (Cck1R) in Pcp2-ATXN1[30Q]D776 mice confers a progressive disease with Purkinje neuron death. Administration of a Cck1R agonist, A71623, to Pcp2-ATXN1[30Q]D776;Cck-/- and Pcp2-AXTN1[82Q] mice dampens Purkinje neuron pathology and associated deficits in motor performance. In addition, A71623 administration improves motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Moreover, the Cck1R agonist A71623 corrects mTORC1 signaling and improves expression of calbindin in cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results indicate that manipulation of the Cck-Cck1R pathway is a potential therapeutic target for treatment of diseases involving Purkinje neuron degeneration.
    Keywords:  Purkinje cells; cholecystokinin; mTORC1 signaling; neuroprotection; spinocerebellar ataxia
    DOI:  https://doi.org/10.1016/j.celrep.2021.109831
  32. Nat Commun. 2021 Oct 15. 12(1): 6025
      A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C. elegans models that express, either ubiquitously or exclusively in neurons, 75 GGGGCC repeats flanked by intronic C9orf72 sequence. The worms generate DPRs (poly-glycine-alanine [poly-GA], poly-glycine-proline [poly-GP]) and poly-glycine-arginine [poly-GR]), display neurodegeneration, and exhibit locomotor and lifespan defects. Mutation of a non-canonical translation-initiating codon (CUG) upstream of the repeats selectively reduces poly-GA steady-state levels and ameliorates disease, suggesting poly-GA is pathogenic. Importantly, loss-of-function mutations in the eukaryotic translation initiation factor 2D (eif-2D/eIF2D) reduce poly-GA and poly-GP levels, and increase lifespan in both C. elegans models. Our in vitro studies in mammalian cells yield similar results. Here, we show a conserved role for eif-2D/eIF2D in DPR expression.
    DOI:  https://doi.org/10.1038/s41467-021-26303-x
  33. Autophagy. 2021 Oct 13. 1-3
      Formation of the double-membrane autophagosome requires membrane reorganization of the endomembrane system to generate membrane precursors. The ER-Golgi trafficking system has been shown to provide membranes for phagophore growth. Nonetheless, how the components of the ER-Golgi system are redirected toward autophagosome biogenesis remains unclear. Here, we identify a new type of membrane contact formed between the ER-Golgi intermediate compartment (ERGIC) and the ER-exit sites (ERES) under macroautophagy/autophagy-induction conditions. The ERGIC-ERES contact is established by the TMED9-PREB/SEC12 interaction and regulates the biogenesis of the ERGIC-COPII vesicles, which we found previously act as a membrane template for LC3 lipidation and autophagosome formation.
    Keywords:  Autophagosome; COPII; ERES; ERGIC; SEC12; TMED9; autophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1972406
  34. BMC Rheumatol. 2021 Oct 11. 5(1): 41
       BACKGROUND: Galactosialidosis (GS) is a rare inherited lysosomal storage disorder (LSD) which is characterized by a defect in the lysosomal glycoprotein catabolism. We report, for the first time, the case of a child affected by GS presenting with recurrent episodes of extensive joint inflammation in both knee joints. The aim of this case-report is to describe the clinical presentation as well as the laboratory, radiologic and microscopic features of this unique presentation of GS. Furthermore, we explore inflammatory mechanisms potentially responsible for the origination of the arthritic joint pathology observed in our patient.
    CASE PRESENTATION: We describe the rare case of a 12-year-old boy diagnosed with GS (late infantile form) who presented with multiple episodes of inflammatory arthritis involving both knees; no other joints were suspected for joint inflammation. Laboratory results did not indicate an autoimmune disorder. Synovial fluid tested negative for any bacterial infection and ruled out a malignancy and crystal-induced arthritis. Microscopic examination of the synovial tissue revealed numerous foamy macrophages with extensive vacuolization, consistent with the previous diagnosis of GS. Treatment consisted of aspiration of excessive joint fluid and subsequent intra-articular injection of triamcinolonhexacetonide with excellent but transient result. Given the evidence of storage products within macrophages of the inflamed synovial tissue and the absence of other etiological clues, GS itself was considered as the primary cause for the relapsing inflammatory joint pathology. According to the restricted data on articular manifestations in GS, to date, GS cannot be linked directly to joint inflammation. Nevertheless, in several other LSDs, the accumulation of storage material has been associated with numerous osteoimmunological changes that might play a role in the pathophysiology of arthritic processes.
    CONCLUSIONS: We hypothesize that the articular build-up of GS storage products triggered systemic as well as local inflammatory processes, resulting in the extensive inflammatory joint pathology as observed in our patient. Future identification of other patients with GS is required to corroborate the existence of an arthritic clinical phenotype of GS and to assess the underlying pathophysiology.
    Keywords:  Children; Galactosialidosis; Inflammatory arthritis; Inherited metabolic disorder; Joint inflammation; Lysosomal storage disorder; Synovitis
    DOI:  https://doi.org/10.1186/s41927-021-00208-0
  35. Curr Opin Neurobiol. 2021 Oct 07. pii: S0959-4388(21)00105-7. [Epub ahead of print]72 55-62
      Genes associated with endolysosomal function have been recently associated with familial Parkinson's disease and described as risk factors for sporadic cases. This indicates that deficits in this pathway predispose to parkinsonism. To better understand the role of these genes in disease development, rodent models have been created by targeting genes playing a role in endolysosomal function, such as LRRK2, DNAJC6, SYNJ1, VPS35, GBA1, ATP13A2 and TMEM175. Here, we review the latest findings describing parkinsonian features in these animal models secondary to endolysosomal dysfunction. Also, we provide suggestions for further development and application of these animal models to better understand the contribution of endolysosomal dysfunction in Parkinson's disease and provide novel models for testing therapeutic approaches.
    DOI:  https://doi.org/10.1016/j.conb.2021.09.004
  36. Elife. 2021 Oct 14. pii: e71595. [Epub ahead of print]10
      Osteoblast differentiation is sequentially characterized by high rates of proliferation followed by increased protein and matrix synthesis, processes that require substantial amino acid acquisition and production. How osteoblasts obtain or maintain intracellular amino acid production is poorly understood. Here we identify SLC1A5 as a critical amino acid transporter during bone development. Using a genetic and metabolomic approach, we show SLC1A5 acts cell autonomously to regulate protein synthesis and osteoblast differentiation. SLC1A5 provides both glutamine and asparagine which are essential for osteoblast differentiation. Mechanistically, glutamine and to a lesser extent asparagine support amino acid biosynthesis. Thus, osteoblasts depend on Slc1a5 to provide glutamine and asparagine, which are subsequently used to produce non-essential amino acids and support osteoblast differentiation and bone development.
    Keywords:  cell biology; developmental biology; mouse
    DOI:  https://doi.org/10.7554/eLife.71595
  37. Neuron. 2021 Oct 04. pii: S0896-6273(21)00704-2. [Epub ahead of print]
      Impairment in glucocerebrosidase (GCase) is strongly associated with the development of Parkinson's disease (PD), yet the regulators responsible for its impairment remain elusive. In this paper, we identify the E3 ligase Thyroid Hormone Receptor Interacting Protein 12 (TRIP12) as a key regulator of GCase. TRIP12 interacts with and ubiquitinates GCase at lysine 293 to control its degradation via ubiquitin proteasomal degradation. Ubiquitinated GCase by TRIP12 leads to its functional impairment through premature degradation and subsequent accumulation of α-synuclein. TRIP12 overexpression causes mitochondrial dysfunction, which is ameliorated by GCase overexpression. Further, conditional TRIP12 knockout in vitro and knockdown in vivo promotes the expression of GCase, which blocks α-synuclein preformed fibrils (α-syn PFFs)-provoked dopaminergic neurodegeneration. Moreover, TRIP12 accumulates in human PD brain and α-synuclein-based mouse models. The identification of TRIP12 as a regulator of GCase provides a new perspective on the molecular mechanisms underlying dysfunctional GCase-driven neurodegeneration in PD.
    Keywords:  Gaucher’s disease (GD); Parkinson’s disease (PD); Thyroid Hormone Receptor Interacting Protein 12 (TRIP12); glucocerebrosidase (GCase); glucocerebrosidase 1 gene (GBA1); glucosylceramide (GlcCer); lysosome; mitochondria; α-synuclein; α-synuclein preformed fibrils (α-syn PFFs)
    DOI:  https://doi.org/10.1016/j.neuron.2021.09.031
  38. Nucleic Acids Res. 2021 Oct 14. pii: gkab908. [Epub ahead of print]
      The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.
    DOI:  https://doi.org/10.1093/nar/gkab908