bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2020–06–28
sixteen papers selected by
Oltea Sampetrean, Keio University



  1. EMBO J. 2020 Jun 22. e103790
      Tumour-associated microglia/macrophages (TAM) are the most numerous non-neoplastic populations in the tumour microenvironment in glioblastoma multiforme (GBM), the most common malignant brain tumour in adulthood. The mTOR pathway, an important regulator of cell survival/proliferation, is upregulated in GBM, but little is known about the potential role of this pathway in TAM. Here, we show that GBM-initiating cells induce mTOR signalling in the microglia but not bone marrow-derived macrophages in both in vitro and in vivo GBM mouse models. mTOR-dependent regulation of STAT3 and NF-κB activity promotes an immunosuppressive microglial phenotype. This hinders effector T-cell infiltration, proliferation and immune reactivity, thereby contributing to tumour immune evasion and promoting tumour growth in mouse models. The translational value of our results is demonstrated in whole transcriptome datasets of human GBM and in a novel in vitro model, whereby expanded-potential stem cells (EPSC)-derived microglia-like cells are conditioned by syngeneic patient-derived GBM-initiating cells. These results raise the possibility that microglia could be the primary target of mTOR inhibition, rather than the intrinsic tumour cells in GBM.
    Keywords:   TAM ; mTOR ; T cells; glioblastoma; microglia
    DOI:  https://doi.org/10.15252/embj.2019103790
  2. J Cell Physiol. 2020 Jun 22.
      Gliomas are infiltrative neoplasms with a highly invasive nature. Due to its distinct genomic, genetic and epigenetic features, the immune prognostic signature (IPS) and immune microenvironment of glioblastoma (GBM) merit further research. We aimed to explore prognosis-related immune genes and develop an IPS model for predicting prognosis in GBM. RNA-sequencing data, as well as clinical information, from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) public cohorts were analyzed. To develop the IPS, least absolute shrinkage and selection operator (LASSO) Cox analysis was performed for immune-related genes that were differentially expressed between GBM and normal tissues. Then, interaction effects of the IPS on the immune microenvironment were systematically analyzed; the precise prognostic model was developed based on the IPS and clinical data and was then further validated. A total of 21 immune prognostic genes were identified based on GBM microenvironment status. An 8-gene IPS was established, and the GBM patients were effectively stratified into low- and high-risk groups in the TCGA cohort as a training set. Univariate and multivariate Cox analyses revealed that IPS was an independent prognostic factor, and the prognostic performance of individual IPS genes was systematically illustrated. In addition, a comprehensive and novel nomogram model was initially established to estimate overall survival in TCGA-GBM patients, and high-risk patients had higher levels of dendritic cell and neutrophil infiltration. Furthermore, the nomogram model was developed and validated in the CGGA validation set. The low-risk IPS was linked to a stronger response to anti-PD-L1 immunotherapy and clinical advantages in the IMvigor210 cohort. This novel IPS with promising biomarkers classifies GBM patients into subgroups with distinct clinical outcomes and immunophenotypes. Our findings and this resource may help to characterize the immune microenvironment, inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
    Keywords:  genome-scale analysis; glioblastoma; immune microenvironment; prognostic model
    DOI:  https://doi.org/10.1002/jcp.29878
  3. Neuro Oncol. 2020 Jun 27. pii: noaa148. [Epub ahead of print]
       BACKGROUND: Glioblastoma (GBM) is the most aggressive primary brain tumor and has a dismal prognosis. Previously, we identified that junctional adhesion molecule-A (JAM-A), a cell adhesion molecule, is highly elevated in human GBM cancer stem cells and predicts poor patient prognosis. While JAM-A is also highly expressed in other cells in the tumor microenvironment, specifically microglia and macrophages, how JAM-A expression in these cells affects tumor growth has yet to be determined. The goal of this study was to understand the role of microenvironmental JAM-A in mediating GBM growth.
    METHODS: Male and female wild-type (WT) and JAM-A-deficient mice were transplanted intracranially with the syngeneic glioma cell lines GL261 and SB28 and were assessed for differences in survival and microglial activation in tumors and in vitro. RNA-sequencing was performed to identify differentially regulated genes among all genotypes, and differences were validated in vitro and in vivo.
    RESULTS: We found that JAM-A-deficient female mice succumbed to GBM more quickly compared to WT females and JAM-A-deficient and male WT mice. Analysis of microglia in the tumors revealed that female JAM-A-deficient microglia were more activated, and RNA-sequencing identified elevated expression of Fizz1 and Ifi202b specifically in JAM-A-deficient female microglia.
    CONCLUSIONS: Our findings suggest that JAM-A functions to suppress pathogenic microglial activation in the female tumor microenvironment, highlighting an emerging role for sex differences in the GBM microenvironment and suggesting that sex differences extend beyond previously reported tumor cell-intrinsic differences.
    Keywords:  glioblastoma; junctional adhesion molecule-A; microglia; sex differences
    DOI:  https://doi.org/10.1093/neuonc/noaa148
  4. Glia. 2020 Jun 23.
      Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem-like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic-helix-loop-helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA-seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
    Keywords:  ASCL1; brain tumor; glioma development; mouse model; transcription factor function
    DOI:  https://doi.org/10.1002/glia.23873
  5. Cancers (Basel). 2020 Jun 18. pii: E1622. [Epub ahead of print]12(6):
      Brain tumors encompass a diverse group of neoplasias arising from different cell lineages. Tumors of glial origin have been the subject of intense research because of their rapid and fatal progression. From a clinical point of view, complete surgical resection of gliomas is highly difficult. Moreover, the remaining tumor cells are resistant to traditional therapies such as radio- or chemotherapy and tumors always recur. Here we have revised the new genetic and epigenetic classification of gliomas and the description of the different transcriptional subtypes. In order to understand the progression of the different gliomas we have focused on the interaction of the plastic tumor cells with their vasculature-rich microenvironment and with their distinct immune system. We believe that a comprehensive characterization of the glioma microenvironment will shed some light into why these tumors behave differently from other cancers. Furthermore, a novel classification of gliomas that could integrate the genetic background and the cellular ecosystems could have profound implications in the efficiency of current therapies as well as in the development of new treatments.
    Keywords:  EGFR; IDH mutations; blood-brain-barrier; endothelium; genetic and epigenetic alterations; glioblastoma; glioma subtypes; immune infiltrate; lower grade glioma; pericytes; tumor microenvironment; tumor-associated-macrophages
    DOI:  https://doi.org/10.3390/cancers12061622
  6. Front Oncol. 2020 ;10 747
      Background: Glioma therapy is challenged by the diffuse and invasive growth of glioma. Lysosomal protein transmembrane 5 (LAPTM5) was identified as an invasion inhibitor by an in vivo screen for invasion-associated genes. The aim of this study was to decipher the function of LAPTM5 in glioblastoma and its interaction with the CD40 receptor which is intensively evaluated as a target in the therapy of diverse cancers including glioma. Methods: Knockdown of LAPTM5 was performed in different glioma cell lines to analyze the impact on clonogenicity, invasiveness, sensitivity to temozolomide chemotherapy, and tumorigenicity in vitro and in vivo. An expression array was used to elucidate the underlying pathways. CD40 knockdown and overexpression were induced to investigate a potential crosstalk of LAPTM5 and CD40. LAPTM5 and CD40 were correlated with the clinical outcome of glioma patients. Results: Knockdown of LAPTM5 unleashed CD40-mediated NFκB activation, resulting in enhanced invasiveness, clonogenicity, and temozolomide resistance that was overcome by NFκB inhibition. LAPTM5 expression correlated with better overall survival in glioblastoma patients depending on CD40 expression status. Conclusion: We conclude that LAPTM5 conveyed tumor suppression and temozolomide sensitation in CD40-positive glioblastoma through the inhibition of CD40-mediated NFκB activation. Hence, LAPTM5 may provide a potential biomarker for sensitivity to temozolomide in CD40-positive glioblastoma.
    Keywords:  CD40; LAPTM5; NFκB; glioblastoma; temozolomide
    DOI:  https://doi.org/10.3389/fonc.2020.00747
  7. Mol Carcinog. 2020 Jun 22.
      The aggressive nature of glioblastoma multiforme (GBM) may be attributed to the dysregulation of pathways driving both proliferation and invasion. EphrinB2, a membrane-bound ligand for some of the Eph receptors, has emerged as a critical target regulating these pathways. In this study, we investigated the role of ephrinB2 in regulating proliferation and invasion in GBM using intracranial and subcutaneous xenograft models. The Cancer Genome Atlas analysis suggested high transcript and low methylation levels of ephrinB2 as poor prognostic indicators in GBM, consistent with its role as an oncogene. EphrinB2 knockdown, however, increased tumor growth, an effect that was reversed by ephrinB2 Fc protein. This was associated with EphB4 receptor activation, consistent with the data showing a significant decrease in tumor growth with ephrinB2 overexpression. Mechanistic analyses showed that ephrinB2 knockdown has anti-invasive but pro-proliferative effects in GBM. EphB4 stimulation following ephrinB2 Fc treatment in ephrinB2 knockdown tumors was shown to impart strong anti-proliferative and anti-invasive effects, which correlated with decrease in PCNA, p-ERK, vimentin, Snail, Fak, and increase in the E-cadherin levels. Overall, our study suggests that ephrinB2 cannot be used as a sole therapeutic target. Concomitant inhibition of ephrinB2 signaling with EphB4 activation is required to achieve maximal therapeutic benefit in GBM.
    Keywords:  EphB4; GBM; ephrinB2; invasion; proliferation
    DOI:  https://doi.org/10.1002/mc.23237
  8. Cell Death Dis. 2020 Jun 25. 11(6): 485
      Glioblastoma (GBM) is an immunosuppressive, lethal brain tumor. Despite advances in molecular understanding and therapies, the clinical benefits have remained limited, and the life expectancy of patients with GBM has only been extended to ~15 months. Currently, genetically modified oncolytic viruses (OV) that express immunomodulatory transgenes constitute a research hot spot in the field of glioma treatment. An oncolytic virus is designed to selectively target, infect, and replicate in tumor cells while sparing normal tissues. Moreover, many studies have shown therapeutic advantages, and recent clinical trials have demonstrated the safety and efficacy of their usage. However, the therapeutic efficacy of oncolytic viruses alone is limited, while oncolytic viruses expressing immunomodulatory transgenes are more potent inducers of immunity and enhance immune cell-mediated antitumor immune responses in GBM. An increasing number of basic studies on oncolytic viruses encoding immunomodulatory transgene therapy for malignant gliomas have yielded beneficial outcomes. Oncolytic viruses that are armed with immunomodulatory transgenes remain promising as a therapy against malignant gliomas and will undoubtedly provide new insights into possible clinical uses or strategies. In this review, we summarize the research advances related to oncolytic viruses that express immunomodulatory transgenes, as well as potential treatment pitfalls in patients with malignant gliomas.
    DOI:  https://doi.org/10.1038/s41419-020-2696-5
  9. Acta Neuropathol Commun. 2020 Jun 20. 8(1): 87
      Molecular biomarkers provide both diagnostic and prognostic results for patients with diffuse glioma, the most common primary brain tumor in adults. Here, we used a long-read nanopore-based sequencing technique to simultaneously assess IDH mutation status and MGMT methylation level in 4 human cell lines and 8 fresh human brain tumor biopsies. Currently, these biomarkers are assayed separately, and results can take days to weeks. We demonstrated the use of nanopore Cas9-targeted sequencing (nCATS) to identify IDH1 and IDH2 mutations within 36 h and compared this approach against currently used clinical methods. nCATS was also able to simultaneously provide high-resolution evaluation of MGMT methylation levels not only at the promoter region, as with currently used methods, but also at CpGs across the proximal promoter region, the entirety of exon 1, and a portion of intron 1. We compared the methylation levels of all CpGs to MGMT expression in all cell lines and tumors and observed a positive correlation between intron 1 methylation and MGMT expression. Finally, we identified single nucleotide variants in 3 target loci. This pilot study demonstrates the feasibility of using nCATS as a clinical tool for cancer precision medicine.
    Keywords:  CRISPR/Cas9; Glioblastoma; IDH; Long-read sequencing; MGMT; Methylation; Molecular marker; Nanopore; Targeted sequencing
    DOI:  https://doi.org/10.1186/s40478-020-00963-0
  10. Curr Neuropharmacol. 2020 Jun 26.
      Temozolomide (TMZ), an oral alkylating prodrug which delivers a methyl group to purine bases of DNA (O6- guanine; N7-guanine and N3-adenine), is frequently used together with radiotherapy as part of the first-line treatment of high-grade gliomas. The main advantages are its high oral bioavailability (almost 100% although the concentration found in the cerebrospinal fluid was approximately 20% of the plasma concentration of TMZ), its lipophilic properties, and small size that confer the ability to cross the blood-brain barrier. Furthermore, this agent has demonstrated activity not only in brain tumors but also in a variety of solid tumors. However, conventional therapy using surgery, radiation, and TMZ in glioblastoma results in a median patient survival of 14.6 months. Treatment failure has been associated with the tumor drug resistance. This phenomenon has been linked to the expression of O6-methylguanine-DNA methyltransferase, but the mismatch repair system and the presence of cancer stem-like cells in tumors have also been related to TMZ resistance. The understanding of these mechanisms is essential for the development of new therapeutic strategies in the clinical use of TMZ, including the use of nanomaterial delivery systems and the association with other chemotherapy agents. The aim of this review is to summarize the resistance mechanisms of TMZ and the current advances to improve its clinical use.
    Keywords:  Alkylating agents; cancer; chemotherapy; clinical trials ; drug resistance; nanoparticles
    DOI:  https://doi.org/10.2174/1570159X18666200626204005
  11. Cancers (Basel). 2020 Jun 19. pii: E1633. [Epub ahead of print]12(6):
      Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.
    Keywords:  13C-tracing; 2-hydroxyglutarate formation; IDH1-mutant gliomas; genetically engineered mouse models
    DOI:  https://doi.org/10.3390/cancers12061633
  12. BMC Med. 2020 Jun 22. 18(1): 142
       BACKGROUND: Glioblastoma (GBM) is one of the most aggressive and vascularized brain tumors in adults, with a median survival of 20.9 months. In newly diagnosed and recurrent GBM, bevacizumab demonstrated an increase in progression-free survival, but not in overall survival.
    METHODS: We conducted an in silico analysis of VEGF expression, in a cohort of 1082 glioma patients. Then, to determine whether appropriate bevacizumab dose adjustment could increase the anti-angiogenic response, we used in vitro and in vivo GBM models. Additionally, we analyzed VEGFA expression in tissue, serum, and plasma in a cohort of GBM patients before and during bevacizumab treatment.
    RESULTS: We identified that 20% of primary GBM did not express VEGFA suggesting that these patients would probably not respond to bevacizumab therapy as we proved in vitro and in vivo. We found that a specific dose of bevacizumab calculated based on VEGFA expression levels increases the response to treatment in cell culture and serum samples from mice bearing GBM tumors. Additionally, in a cohort of GBM patients, we observed a correlation of VEGFA levels in serum, but not in plasma, with bevacizumab treatment performance.
    CONCLUSIONS: Our data suggest that bevacizumab dose adjustment could improve clinical outcomes in Glioblastoma treatment.
    Keywords:  Angiogenesis; Bevacizumab; Glioblastoma; Neovasculogenesis; VEGFA
    DOI:  https://doi.org/10.1186/s12916-020-01610-0
  13. Cancers (Basel). 2020 Jun 23. pii: E1667. [Epub ahead of print]12(6):
      The failure of existing therapies in treating human glioblastoma (GBM) mostly is due to the ability of GBM to infiltrate into healthy regions of the brain; however, the relationship between cell motility and cell mechanics is not well understood. Here, we used atomic force microscopy (AFM), live-cell imaging, and biochemical tools to study the connection between motility and mechanics in human GBM cells. It was found thatRac1 inactivation by genomic silencing and inhibition with EHT 1864 reduced cell motility, inhibited cell ruffles, and disrupted the dynamics of cytoskeleton organization and cell adhesion. These changes were correlated with abnormal localization of myosin IIa and a rapid suppression of the phosphorylation of Erk1/2. At the same time, AFM measurements of the GBM cells revealed a significant increase in cell elasticity and viscosity following Rac1 inhibition. These results indicate that mechanical properties profoundly affect cell motility and may play an important role in the infiltration of GBM. It is conceivable that the mechanical characters might be used as markers for further surgical and therapeutical interventions.
    Keywords:  Rac1; cell adhesion; cell mechanics; cell motility; cytoskeleton
    DOI:  https://doi.org/10.3390/cancers12061667
  14. Cancer Discov. 2020 Jun 26.
      Ivosidenib, an inhibitor of mutant IDH1, was safe and showed early evidence of efficacy in glioma.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2020-095
  15. Front Oncol. 2020 ;10 739
      Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
    Keywords:  5-aminolevulinic acid; blood-brain barrier; blood-tumor barrier; drug delivery; enhanced permeability and retention; fluorescein sodium; fluorescence-guided surgery; indocyanine green
    DOI:  https://doi.org/10.3389/fonc.2020.00739
  16. PLoS One. 2020 ;15(6): e0235204
      Manipulative strategies of ROS in cancer are often exhibited as changes in the redox and thiol ratio of the cells. Cellular responses to oxidative insults are generated in response to these changes which are triggered due to the rerouting of the metabolic framework to maintain survival under stress. However, mechanisms of these metabolic re-routing are not clearly understood and remained debatable. In the present work, we have designed a context-based dynamic metabolic model to establish that the coordinated functioning of glutathione peroxidase (GTHP), glutathione oxidoreductase (GTHO) and NADPH oxidase (NOX) is crucial in determining cancerous transformation, specifically in gliomas. Further, we propose that the puzzling duality of ROS (represented by changes in h2o2 in the present model) in exhibiting varying cellular fates can be determined by considering simultaneous changes in nadph/nadp+ and gsh/gssg that occur during the reprogramming of metabolic reactions. This will be helpful in determining the pro-apoptotic or anti-apoptotic fate of gliomas and can be useful in designing effective pro-oxidant and/or anti-oxidant therapeutic approaches against gliomas.
    DOI:  https://doi.org/10.1371/journal.pone.0235204