bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2020–12–13
fourteen papers selected by
Oltea Sampetrean, Keio University



  1. Brain. 2020 Dec 05. pii: awaa404. [Epub ahead of print]
      The molecular pathogenesis of glioblastoma indicates that RTK/Ras/PI3K, RB and TP53 pathways are critical for human gliomagenesis. Here, several transgenic zebrafish lines with single or multiple deletions of nf1, tp53 and rb1 in astrocytes, were established to genetically induce gliomagenesis in zebrafish. In the mutant with a single deletion, we found only the nf1 mutation low-efficiently induced tumour incidence, suggesting that the Nf1 pathway is critical for the initiation of gliomagenesis in zebrafish. Combination of mutations, nf1;tp53 and rb1;tp53 combined knockout fish, showed much higher tumour incidences, high-grade histology, increased invasiveness, and shortened survival time. Further bioinformatics analyses demonstrated the alterations in RTK/Ras/PI3K, cell cycle, and focal adhesion pathways, induced by abrogated nf1, tp53, or rb1, were probably the critical stepwise biological events for the initiation and development of gliomagenesis in zebrafish. Gene expression profiling and histological analyses showed the tumours derived from zebrafish have significant similarities to the subgroups of human gliomas. Furthermore, temozolomide treatment effectively suppressed gliomagenesis in these glioma zebrafish models, and the histological responses in temozolomide-treated zebrafish were similar to those observed in clinically treated glioma patients. Thus, our findings will offer a potential tool for genetically investigating gliomagenesis and screening potential targeted anti-tumour compounds for glioma treatment.
    Keywords:  glioma; nf1; rb1; tp53; zebrafish
    DOI:  https://doi.org/10.1093/brain/awaa404
  2. Cancers (Basel). 2020 Dec 04. pii: E3641. [Epub ahead of print]12(12):
      To manage refractory and invasive glioblastomas (GBM)s, photodynamic therapy (PDT) using talaporfin sodium (NPe6) (NPe6-PDT) was recently approved in clinical practice. However, the molecular machineries regulating resistance against NPe6-PDT in GBMs and mechanisms underlying the changes in GBM phenotypes following NPe6-PDT remain unknown. Herein, we established an in vitro NPe6-mediated PDT model using human GBM cell lines. NPe6-PDT induced GBM cell death in a NPe6 dose-dependent manner. However, this NPe6-PDT-induced GBM cell death was not completely blocked by the pan-caspase inhibitor, suggesting NPe6-PDT induces both caspase-dependent and -independent cell death. Moreover, treatment with poly (ADP-ribose) polymerase inhibitor blocked NPe6-PDT-triggered caspase-independent GBM cell death. Next, it was also revealed resistance to re-NPe6-PDT of GBM cells and GBM stem cells survived following NPe6-PDT (NPe6-PDT-R cells), as well as migration and invasion of NPe6-PDT-R cells were enhanced. Immunoblotting of NPe6-PDT-R cells to assess the behavior of the proteins that are known to be stress-induced revealed that only ERK1/2 activation exhibited the same trend as migration. Importantly, treatment with the MEK1/2 inhibitor trametinib reversed resistance against re-NPe6-PDT and suppressed the enhanced migration and invasion of NPe6-PDT-R cells. Overall, enhanced ERK1/2 activation is suggested as a key regulator of elevated malignant phenotypes of GBM cells surviving NPe6-PDT and is therefore considered as a potential therapeutic target against GBM.
    Keywords:  ERK1/2; glioblastoma; migration; photodynamic therapy; resistance; talaporfin
    DOI:  https://doi.org/10.3390/cancers12123641
  3. Front Cell Neurosci. 2020 ;14 600018
      The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.
    Keywords:  brain; calcium channel; calcium toolkit; cancer stem cell; glioblastoma; glioma; neural stem cells; store-operated channel
    DOI:  https://doi.org/10.3389/fncel.2020.600018
  4. Cancers (Basel). 2020 Dec 08. pii: E3682. [Epub ahead of print]12(12):
      Mutations in the isocitrate dehydrogenase 1 (IDH1) gene are found in a high proportion of diffuse gliomas. The presence of the IDH1 mutation is a valuable diagnostic, prognostic and predictive biomarker for the management of patients with glial tumours. Techniques involving vibrational spectroscopy, e.g., Fourier transform infrared (FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer detection, and have the potential to contribute to diagnostics. The implementation of FTIR microspectroscopy during surgical biopsy could present a fast, label-free method for molecular genetic classification. For example, the rapid determination of IDH1 status in a patient with a glioma diagnosis could inform intra-operative decision-making between alternative surgical strategies. In this study, we utilized synchrotron-based FTIR microanalysis to probe tissue microarray sections from 79 glioma patients, and distinguished the positive class (IDH1-mutated) from the IDH1-wildtype glioma, with a sensitivity and specificity of 82.4% and 83.4%, respectively. We also examined the ability of attenuated total reflection (ATR)-FTIR spectroscopy in detecting the biomolecular events and global epigenetic and metabolic changes associated with mutations in the IDH1 enzyme, in blood serum samples collected from an additional 72 brain tumour patients. Centrifugal filtration enhanced the diagnostic ability of the classification models, with balanced accuracies up to ~69%. Identification of the molecular status from blood serum prior to biopsy could further direct some patients to alternative treatment strategies.
    Keywords:  biofluids; biophotonics; cancer; glioma; histopathology; imaging; infrared
    DOI:  https://doi.org/10.3390/cancers12123682
  5. iScience. 2020 Dec 18. 23(12): 101770
      Tumor progression is profoundly influenced by interactions between cancer cells and the tumor microenvironment (TME). Among the various non-neoplastic cells present, immune cells are critical players in tumor development and have thus emerged as attractive therapeutic targets. Malignant gliomas exhibit a unique immune landscape characterized by high numbers of tumor-associated macrophages (TAMs). Despite encouraging preclinical results, targeting TAMs has yielded limited clinical success as a strategy for slowing glioma progression. The slow translational progress of TAM-targeted therapies is due in part to an incomplete understanding of the factors driving TAM recruitment, differentiation, and polarization. Furthermore, the functions that TAMs adopt in gliomas remain largely unknown. Progress in addressing these gaps requires sophisticated culture platforms capable of capturing key cellular and physical TME features. This review summarizes the current understanding of TAMs in gliomas and highlights the utility of in vitro TME models for investigating TAM-cancer cell cross talk.
    Keywords:  Bioengineering; Cancer; Immunology
    DOI:  https://doi.org/10.1016/j.isci.2020.101770
  6. Clin Cancer Res. 2020 Dec 08. pii: clincanres.3580.2020. [Epub ahead of print]
       PURPOSE: Insufficient control of infiltrative glioblastoma cells is a major cause of treatment failure and tumor recurrence. Hence, detailed insights into pathophysiological changes that precede glioblastoma recurrence are needed in order to develop more precise neuroimaging modalities for tailored diagnostic monitoring and therapeutic approaches.
    EXPERIMENTAL DESIGN: Overall 168 physiological magnetic resonance imaging (MRI) follow-up examinations of 56 glioblastoma patients who developed recurrence after standard therapy were retrospectively evaluated, i.e. two post-standard-therapeutic follow-ups before and one at radiological recurrence. MRI biomarkers for microvascular architecture and perfusion, neovascularization activity, oxygen metabolism, and hypoxia were determined for brain areas that developed in the further course into recurrence and for the recurrent glioblastoma itself. The temporal pattern of biomarker changes were fitted with locally-estimated-scatterplot-smoothing (LOESS) functions and analyzed for pathophysiological changes preceding radiological glioblastoma recurrence.
    RESULTS: Our MRI approach demonstrated early pathophysiological changes prior to radiological glioblastoma recurrence in all patients. Analysis of the time-courses revealed a model for the pathophysiology of glioblastoma recurrence: 190 days prior to radiological recurrence, vascular cooption by glioblastoma cells induced vessel regression detected as decreasing vessel density/perfusion and increasing hypoxia. 70 days later, neovascularization activity was upregulated which re-increased vessel density and perfusion. Hypoxia, however, continued to intensify for 30 days and peaked 90 days before radiological recurrence.
    CONCLUSIONS: Hypoxia may represent an early sign for GBM recurrence. This might become useful in the development of new combined diagnostic-therapeutic approaches for tailored clinical management of recurrent glioblastoma. Further preclinical and in-human studies are required for validation and evaluation.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-20-3580
  7. Cancers (Basel). 2020 Dec 05. pii: E3654. [Epub ahead of print]12(12):
      The stem cell marker Musashi1 (MSI1) is highly expressed during neurogenesis and in glioblastoma (GBM). MSI1 promotes self-renewal and impairs differentiation in cancer and non-malignant progenitor cells. However, a comprehensive understanding of its role in promoting GBM-driving networks remains to be deciphered. We demonstrate that MSI1 is highly expressed in GBM recurrences, an oncologist's major defiance. For the first time, we provide evidence that MSI1 promotes the expression of stem cell markers like CD44, co-expressed with MSI1 within recurrence-promoting cells at the migrating front of primary GBM samples. With GBM cell models of pediatric and adult origin, including isolated primary tumorspheres, we show that MSI1 promotes stem cell-like characteristics. Importantly, it impairs CD44 downregulation in a 3'UTR- and miRNA-dependent manner by controlling mRNA turnover. This regulation is disturbed by the previously reported MSI1 inhibitor luteolin, providing further evidence for a therapeutic target potential of MSI1 in GBM treatment.
    Keywords:  CD44; GBM; MSI1; Musashi1; cancer stem cell; glioblastoma; luteolin; miRNA; recurrence
    DOI:  https://doi.org/10.3390/cancers12123654
  8. Am J Cancer Res. 2020 ;10(11): 3765-3783
      The Cdc2-like kinases (CLKs) regulate RNA splicing and have been shown to suppress cell growth. Knockdown of CLK2 was found to block glioma stem-like cell (GSC) growth in vivo through the AKT/FOXO3a/p27 pathway without activating mTOR and MAPK signaling, suggesting that these pathways mediate resistance to CLK2 inhibition. We identified CLK2 binding partners using immunoprecipitation assays and confirmed their interactions in vitro in GSCs. We then tested the cellular viability of several signaling inhibitors in parental and CLK2 knockdown GSCs. Our results demonstrate that CLK2 binds to 14-3-3τ isoform and prevents its ubiquitination in GSCs. Stable CLK2 knockdown increased PP2A activity and activated PI3K signaling. Treatment with a PI3K/mTOR inhibitor in CLK2 knockdown cells led to a modest reduction in cell viability compared to drug treatment alone at a lower dose. However, FGFR inhibitor in CLK2 knockdown cells led to a decrease in cell viability and increased apoptosis. Reduced expression of CLK2 in glioblastoma, in combination with FGFR inhibitors, led to synergistic apoptosis induction and cell cycle arrest compared to blockade or either kinase alone.
    Keywords:  CLK2; FGFR; PI3K/mTOR; glioblastoma; glioma stem cells; survival
  9. Mol Cancer Res. 2020 Dec 07. pii: molcanres.0560.2020. [Epub ahead of print]
      As an adaptive response to hypoxic stress, aggressive tumors rewire their metabolic phenotype into increased malignant behavior through extracellular lipid scavenging and storage in lipid droplets (LDs). However, the underlying mechanisms and potential lipid source retrieved in the hypoxic tumor microenvironment remain poorly understood. Here, we show that exosome-like extracellular vesicles (EVs), known as influential messengers in the tumor microenvironment, may also serve anabolic functions by transforming hypoxic, patient-derived human glioblastoma cell lines into the LD+ phenotype. EVs were internalized via a hypoxia-sensitive, endocytic mechanism that fueled LD formation through direct lipid transfer, and independently of fatty acid synthase activity. EVs can enter cells through multiple and yet ill-defined pathways. On a mechanistic level, we found that hypoxia-mediated EV uptake depends on increased heparan sulfate proteoglycan (HSPG) endocytosis that preferentially followed the lipid raft pathway. The functional relevance of HSPG was evidenced by the reversal of EV-mediated LD loading by targeting of HSPG receptor function. Implications: Together, our data extend the multifaceted role of EVs in cancer biology by showing their LD-inducing capacity in hypoxic glioma cells. Moreover, the present findings highlight a potential function for HSPG-mediated endocytosis as a salvage pathway for EV retrieval during tumor stress conditions.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-0560
  10. Biomedicines. 2020 Dec 03. pii: E564. [Epub ahead of print]8(12):
      Low-grade gliomas (LGG) are infiltrative primary brain tumors that in 70% of the cases undergo anaplastic transformation, deeply affecting prognosis. However, the timing of progression is heterogeneous. Recently, the tumor microenvironment (TME) has gained much attention either as prognostic factor or therapeutic target. Through the release of extracellular vesicles, the TME contributes to tumor progression by transferring bioactive molecules such as microRNA. The aim of the study was to take advantage of glioma-associated stem cells (GASC), an in vitro model of the glioma microenvironment endowed with a prognostic significance, and their released exosomes, to investigate the possible role of exosome miRNAs in favoring the anaplastic transformation of LGG. Therefore, by deep sequencing, we analyzed and compared the miRNA profile of GASC and exosomes obtained from LGG patients characterized by different prognosis. Results showed that exosomes presented a different signature, when compared to their cellular counterpart and that, although sharing several miRNAs, exosomes of patients with a bad prognosis, selectively expressed some miRNAs possibly responsible for the more aggressive phenotype. These findings get insights into the value of TME and exosomes as potential biomarkers for precision medicine approaches aimed at improving LGG prognostic stratification and therapeutic strategies.
    Keywords:  exosomes; low-grade gliomas; microRNA; stratification criteria; tumor microenvironment
    DOI:  https://doi.org/10.3390/biomedicines8120564
  11. iScience. 2020 Dec 18. 23(12): 101802
      Invasion and proliferation are defining phenotypes of cancer, and in glioblastoma blocking one stimulates the other, implying that effective therapy must inhibit both, ideally through a single target that is also dispensable for normal tissue function. The molecular motor myosin 10 meets these criteria. Myosin 10 knockout mice can survive to adulthood, implying that normal cells can compensate for its loss; its deletion impairs invasion, slows proliferation, and prolongs survival in murine models of glioblastoma. Myosin 10 deletion also enhances tumor dependency on the DNA damage and the metabolic stress responses and induces synthetic lethality when combined with inhibitors of these processes. Our results thus demonstrate that targeting myosin 10 is active against glioblastoma by itself, synergizes with other clinically available therapeutics, may have acceptable side effects in normal tissues, and has potential as a heretofore unexplored therapeutic approach for this disease.
    Keywords:  Cancer; Cell Biology
    DOI:  https://doi.org/10.1016/j.isci.2020.101802
  12. Brain. 2020 Dec 05. 143(11): 3294-3307
      For decades, it has been known that gliomas follow a non-random spatial distribution, appearing more often in some brain regions (e.g. the insula) compared to others (e.g. the occipital lobe). A better understanding of the localization patterns of gliomas could provide clues to the origins of these types of tumours, and consequently inform treatment targets. Following hypotheses derived from prior research into neuropsychiatric disease and cancer, gliomas may be expected to localize to brain regions characterized by functional hubness, stem-like cells, and transcription of genetic drivers of gliomagenesis. We combined neuroimaging data from 335 adult patients with high- and low-grade glioma to form a replicable tumour frequency map. Using this map, we demonstrated that glioma frequency is elevated in association cortex and correlated with multiple graph-theoretical metrics of high functional connectedness. Brain regions populated with putative cells of origin for glioma, neural stem cells and oligodendrocyte precursor cells, exhibited a high glioma frequency. Leveraging a human brain atlas of post-mortem gene expression, we found that gliomas were localized to brain regions enriched with expression of genes associated with chromatin organization and synaptic signalling. A set of glioma proto-oncogenes was enriched among the transcriptomic correlates of glioma distribution. Finally, a regression model incorporating connectomic, cellular, and genetic factors explained 58% of the variance in glioma frequency. These results add to previous literature reporting the vulnerability of hub regions to neurological disease, as well as provide support for cancer stem cell theories of glioma. Our findings illustrate how factors of diverse scale, from genetic to connectomic, can independently influence the anatomic localization of brain dysfunction.
    Keywords:  connectomics; gliomagenesis; imaging-transcriptomics; neuro-oncology
    DOI:  https://doi.org/10.1093/brain/awaa277
  13. Front Immunol. 2020 ;11 599253
      Mortality rates in patients diagnosed with central nervous system (CNS) tumors, originating in the brain or spinal cord, continue to remain high despite the advances in multimodal treatment regimens, including surgery, radiation, and chemotherapy. Recent success of adoptive cell transfer immunotherapy treatments using chimeric antigen receptor (CAR) engineered T cells against in chemotherapy resistant CD19 expressing B-cell lymphomas, has provided the foundation for investigating efficacy of CAR T immunotherapies in the context of brain tumor. Although significant efforts have been made in developing and translating the novel CAR T therapies for CNS tumors, including glioblastoma (GBM), researchers are yet to achieve a similar level of success as with liquid malignancies. In this review, we discuss strategies and considerations essential for developing robust preclinical models for the translation of T cell-based therapies for CNS tumors. Some of the key considerations include route of delivery, increasing persistence of T cells in tumor environment, remodeling of myeloid environment, establishing the window of treatment opportunity, harnessing endogenous immune system, designing multiple antigen targeting T cells, and rational combination of immunotherapy with the current standard of care. Although this review focuses primarily on CAR T therapies for GBM, similar strategies, and considerations are applicable to all CNS tumors in general.
    Keywords:  CART; T cells therapy; central nervous system tumors; glioblastoma; immune system
    DOI:  https://doi.org/10.3389/fimmu.2020.599253
  14. Brain. 2020 Dec 10. pii: awaa382. [Epub ahead of print]
      Paediatric high-grade gliomas (HGGs) account for the most brain tumour-related deaths in children and have a median survival of 12-15 months. One promising avenue of research is the development of novel therapies targeting the properties of non-neoplastic cell-types within the tumour such as tumour associated macrophages (TAMs). TAMs are immunosuppressive and promote tumour malignancy in adult HGG; however, in paediatric medulloblastoma, TAMs exhibit anti-tumour properties. Much is known about TAMs in adult HGG, yet little is known about them in the paediatric setting. This raises the question of whether paediatric HGGs possess a distinct constituency of TAMs because of their unique genetic landscapes. Using human paediatric HGG tissue samples and murine models of paediatric HGG, we demonstrate diffuse midline gliomas possess a greater inflammatory gene expression profile compared to hemispheric paediatric HGGs. We also show despite possessing sparse T-cell infiltration, human paediatric HGGs possess high infiltration of IBA1+ TAMs. CD31, PDGFRβ, and PDGFB all strongly correlate with IBA1+ TAM infiltration. To investigate the TAM population, we used the RCAS/tv-a system to recapitulate paediatric HGG in newborn immunocompetent mice. Tumours are induced in Nestin-positive brain cells by PDGFA or PDGFB overexpression with Cdkn2a or Tp53 co-mutations. Tumours driven by PDGFB have a significantly lower median survival compared to PDGFA-driven tumours and have increased TAM infiltration. NanoString and quantitative PCR analysis indicates PDGFB-driven tumours have a highly inflammatory microenvironment characterized by high chemokine expression. In vitro bone marrow-derived monocyte and microglial cultures demonstrate bone marrow-derived monocytes are most responsible for the production of inflammatory signals in the tumour microenvironment in response to PDGFB stimulation. Lastly, using knockout mice deficient for individual chemokines, we demonstrate the feasibility of reducing TAM infiltration and prolonging survival in both PDGFA and PDGFB-driven tumours. We identify CCL3 as a potential key chemokine in these processes in both humans and mice. Together, these studies provide evidence for the potent inflammatory effects PDGFB has in paediatric HGGs.
    Keywords:  PDGFB; TAM; diffuse intrinsic pontine glioma; inflammation; macrophage; paediatric glioma
    DOI:  https://doi.org/10.1093/brain/awaa382