bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2022‒05‒01
seventeen papers selected by
Oltea Sampetrean
Keio University


  1. Autophagy. 2022 Apr 27. 1-2
      Chaperone-mediated autophagy (CMA) is a selective type of autophagy specialized in the individual degradation of targeted proteins. Its impact in any cancer stem cell (CSC) subtype remained elusive. In a recent study, we characterized the expression of LAMP2A and CMA activity in glioblastoma revealing its enrichment in a glioma stem cell (GSC) subpopulation. LAMP2A downregulation diminishes proliferation and self-renewal and induces apoptosis in GSCs in vitro, whereas it delays tumor progression in vivo. The underlying molecular signature of CMA comprises several proteomic and transcriptomic pathways with special relevance to mitochondrial function, the interferon pathway and extracellular matrix interactions. Remarkably, these activities are translated into the clinical scenario, as glioblastoma (GBM) samples show increased expression of LAMP2 compared to healthy tissue, with this expression being positively associated with malignancy grade, TMZ resistance and lower patient survival. These results reveal a novel function of CMA as an intrinsic regulator of GSC tumorigenic properties and highlight its relevance in GBM progression.
    Keywords:  CMA; Cancer stem cell; LAMP2A; glioblastoma; proteomic and transcriptomic analysis
    DOI:  https://doi.org/10.1080/15548627.2022.2069450
  2. Neurotherapeutics. 2022 Apr 27.
      Standard treatment for patients with IDH-mutant gliomas with radiation therapy and chemotherapy is non-curative and associated with long-term neurotoxicity. This has created intense interest in targeted therapeutic strategies that are specifically designed of IDH-mutant tumors. Much progress has been made in understanding the unique biology of IDH-mutant gliomas, and now various IDH-mutant-specific targeting strategies are in various phases of development. Here, we will review a range of IDH-mutant targeting treatments being explored, including direct IDH inhibitors, as well as strategies that take advantage of IDH-mutant-specific vulnerabilities.
    Keywords:  2-Hydroxyglutarate; Astrocytoma; Glioma; IDH1; Metabolism; Oligodendroglioma
    DOI:  https://doi.org/10.1007/s13311-022-01238-3
  3. Acta Neuropathol Commun. 2022 Apr 28. 10(1): 65
      Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.
    Keywords:  FAK; FGF19; FGFR4; Glioblastoma; Integrins; Invasiveness
    DOI:  https://doi.org/10.1186/s40478-022-01363-2
  4. Nat Commun. 2022 Apr 25. 13(1): 2236
      There is ample support for developmental regulation of glioblastoma stem cells. To examine how cell lineage controls glioblastoma stem cell function, we present a cross-species epigenome analysis of mouse and human glioblastoma stem cells. We analyze and compare the chromatin-accessibility landscape of nine mouse glioblastoma stem cell cultures of three defined origins and 60 patient-derived glioblastoma stem cell cultures by assay for transposase-accessible chromatin using sequencing. This separates the mouse cultures according to cell of origin and identifies three human glioblastoma stem cell clusters that show overlapping characteristics with each of the mouse groups, and a distribution along an axis of proneural to mesenchymal phenotypes. The epigenetic-based human glioblastoma stem cell clusters display distinct functional properties and can separate patient survival. Cross-species analyses reveals conserved epigenetic regulation of mouse and human glioblastoma stem cells. We conclude that epigenetic control of glioblastoma stem cells primarily is dictated by developmental origin which impacts clinically relevant glioblastoma stem cell properties and patient survival.
    DOI:  https://doi.org/10.1038/s41467-022-29912-2
  5. Neuro Oncol. 2022 Apr 23. pii: noac112. [Epub ahead of print]
      BACKGROUND: TERT promoter mutations are observed in 80% of wild-type IDH glioblastoma (GBM). Moreover, the upstream TERT transcription factor GABPB1 was recently identified as a cancer-specific therapeutic target for tumors harboring a TERT promoter mutation. In that context, non-invasive imaging biomarkers are needed for the detection of TERT modulation.METHODS: Multiple GBM models were investigated as cells and in vivo tumors and the impact of TERT silencing, either directly or by targeting GABPB1, was determined using 1H and hyperpolarized 13C magnetic resonance spectroscopy (MRS). Changes in associated metabolic enzymes were also investigated.
    RESULTS: 1H-MRS revealed that lactate and glutathione (GSH) were the most significantly altered metabolites when either TERT or GABPB1 was silenced, and lactate and GSH levels were correlated with cellular TERT expression. Consistent with the drop in lactate, 13C-MRS showed that hyperpolarized [1- 13C]lactate production from [1- 13C]pyruvate was also reduced when TERT was silenced. Mechanistically, the reduction in GSH was associated with a reduction in pentose phosphate pathway flux, reduced activity of glucose-6-phosphate dehydrogenase, and reduced NADPH. The drop in lactate and hyperpolarized lactate were associated with reductions in glycolytic flux, NADH, and expression/activity of GLUT1, monocarboxylate transporters, and lactate dehydrogenase A.
    CONCLUSIONS: Our study indicates that MRS-detectable GSH, lactate and lactate production could serve as metabolic biomarkers of response to emerging TERT-targeted therapies for GBM with activating TERT promoter mutations. Importantly these biomarkers are readily translatable to the clinic, and thus could ultimately improve GBM patient management.
    Keywords:  Glioblastoma; Hyperpolarized 13C-MRS; Imaging biomarkers; Magnetic resonance spectroscopy (MRS); Metabolism
    DOI:  https://doi.org/10.1093/neuonc/noac112
  6. Sci Rep. 2022 Apr 26. 12(1): 6805
      Patients with glioma often demonstrate epilepsy. We previously found burst discharges in the peritumoral area in patients with malignant brain tumors during biopsy. Therefore, we hypothesized that the peritumoral area may possess an epileptic focus and that biological alterations in the peritumoral area may cause epileptic symptoms in patients with glioma. To test our hypothesis, we developed a rat model of glioma and characterized it at the cellular and molecular levels. We first labeled rat C6 glioma cells with tdTomato, a red fluorescent protein (C6-tdTomato), and implanted them into the somatosensory cortex of VGAT-Venus rats, which specifically expressed Venus, a yellow fluorescent protein in GABAergic neurons. We observed that the density of GABAergic neurons was significantly decreased in the peritumoral area of rats with glioma compared with the contralateral healthy side. By using a combination technique of laser capture microdissection and RNA sequencing (LCM-seq) of paraformaldehyde-fixed brain sections, we demonstrated that 19 genes were differentially expressed in the peritumoral area and that five of them were associated with epilepsy and neurodevelopmental disorders. In addition, the canonical pathways actively altered in the peritumoral area were predicted to cause a reduction in GABAergic neurons. These results suggest that biological alterations in the peritumoral area may be a cause of glioma-related epilepsy.
    DOI:  https://doi.org/10.1038/s41598-022-10753-4
  7. Neuro Oncol. 2022 Apr 26. pii: noac105. [Epub ahead of print]
      BACKGROUND: Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of EGFR in regulating wild type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 function remains undefined and this study describes the biologic significance of this interaction in GBM.METHODS: Mass spectrometry was used to identify EGFR dependent p53-interacting proteins. The p53 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS activity was measured with a CM-H2DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes.
    RESULTS: Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that functionally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was associated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knockdown, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional EGFR knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs.
    CONCLUSION: This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an interaction between p53 and DNA-PKcs.
    Keywords:  DNA-PKcs; EGFR; glioblastoma; wt-p53
    DOI:  https://doi.org/10.1093/neuonc/noac105
  8. Neuro Oncol. 2022 Apr 25. pii: noac110. [Epub ahead of print]
      BACKGROUND: Glioblastoma (GBM) is an aggressive tumor that frequently exhibits gain of chromosome 7, loss of chromosome 10 and aberrantly activated receptor tyrosine kinase signaling pathways. Previously, we identified Mesenchyme Homeobox 2 (MEOX2), a gene located on chromosome 7, as an upregulated transcription factor in GBM. Overexpressed transcription factors can be involved in driving GBM. Here, we aimed to address the role of MEOX2 in GBM.METHODS: Patient-derived GBM tumorspheres were used to constitutively knockdown or overexpress MEOX2 and subjected to in vitro assays including western blot to assess ERK phosphorylation. Cerebral organoid models were used to investigate the role of MEOX2 in growth initiation. Intracranial mouse implantation models were used to assess the tumorigenic potential of MEOX2. RNA-sequencing, ACT-seq and CUT&Tag were used to identify MEOX2 target genes.
    RESULTS: MEOX2 enhanced ERK signaling through a feed-forward mechanism. We identified Ser 155 as a putative ERK-dependent phosphorylation site upstream of the homeobox-domain of MEOX2. S155A substitution had a major effect on MEOX2 protein levels and altered its subnuclear localization. MEOX2 overexpression cooperated with p53 and PTEN loss in cerebral organoid models of human malignant gliomas to induce cell proliferation. Using high-throughput genomics, we identified putative transcriptional target genes of MEOX2 in patient-derived GBM tumorsphere models and a fresh frozen GBM tumor.
    CONCLUSIONS: We identified MEOX2 as an oncogenic transcription regulator in GBM. MEOX2 increases proliferation in cerebral organoid models of GBM and feeds into ERK signaling that represents a core signaling pathway in GBM.
    Keywords:  ERK signalling; MEOX2; cerebral organoids; glioblastoma; homeobox
    DOI:  https://doi.org/10.1093/neuonc/noac110
  9. Neuro Oncol. 2022 Apr 27. pii: noac117. [Epub ahead of print]
      Diffuse midline glioma (DMG), including those of the brainstem (diffuse intrinsic pontine glioma), are pediatric tumors of the central nervous system (CNS). Recognized as the most lethal of all childhood cancers, palliative radiotherapy remains the only proven treatment option, however, even for those that respond, survival is only temporarily extended. DMG harbor an immunologically 'cold' tumor microenvironment (TME) with few infiltrating immune cells. The mechanisms underpinning the cold TME are not well understood. Low expression levels of immune checkpoint proteins, including PD-1, PD-L1 and CTLA-4, are recurring features of DMG and likely contribute to the lack of response to immune checkpoint inhibitors (ICIs). The unique epigenetic signatures (including stem cell-like methylation patterns), a low tumor mutational burden, and recurring somatic mutations (H3K27M, TP53, ACVR1, MYC and PIK3CA), possibly play a role in the reduced efficacy of traditional immunotherapies. Therefore, to circumvent the lack of efficacy thus far seen for the use of ICIs, adoptive cell transfer (including chimeric antigen receptor T cells) and the use of oncolytic viruses, are currently being evaluated for the treatment of DMG. It remains an absolute imperative that we improve our understanding of DMG's intrinsic and TME features if patients are to realize the potential benefits offered by these sophisticated treatments. Herein, we summarize the limitations of immunotherapeutic approaches, highlight the emerging safety and clinical efficacy shown for sophisticated cell-based therapies, as well as the evolving knowledge underpinning the DMG-immune axis, to guide in the development of immunotherapies that we hope will improve outcomes.
    Keywords:  Pediatric high-grade glioma (HGG); diffuse intrinsic pontine glioma (DIPG); diffuse midline glioma (DMG); immunooncology (IO); immunotherapy
    DOI:  https://doi.org/10.1093/neuonc/noac117
  10. Front Immunol. 2022 ;13 850226
      Glioblastoma is the most common and aggressive form of primary brain cancer, with no improvements in the 5-year survival rate of 4.6% over the past three decades. T-cell-based immunotherapies such as immune-checkpoint inhibitors and chimeric antigen receptor T-cell therapy have prolonged the survival of patients with other cancers and have undergone early-phase clinical evaluation in glioblastoma patients. However, a major challenge for T-cell-based immunotherapy of glioblastoma and other solid cancers is T-cell infiltration into tumours. This process is mediated by chemokine-chemokine receptor and integrin-adhesion molecule interactions, yet the specific nature of the molecules that may facilitate T-cell homing into glioblastoma are unknown. Here, we have characterised chemokine receptor and integrin expression profiles of endogenous glioblastoma-infiltrating T cells, and the chemokine expression profile of glioblastoma-associated cells, by single-cell RNA-sequencing. Subsequently, chemokine receptors and integrins were validated at the protein level to reveal enrichment of receptors CCR2, CCR5, CXCR3, CXCR4, CXCR6, CD49a, and CD49d in glioblastoma-infiltrating T-cell populations relative to T cells in matched patient peripheral blood. Complementary chemokine ligand expression was then validated in glioblastoma biopsies and glioblastoma-derived primary cell cultures. Together, enriched expression of homing receptor-ligand pairs identified in this study implicate a potential role in mediating T-cell infiltration into glioblastoma. Importantly, our data characterising the migratory receptors on endogenous tumour-infiltrating T cells could be exploited to enhance the tumour-homing properties of future T-cell immunotherapies for glioblastoma.
    Keywords:  T cells; chemokine receptors; chemokines; glioblastoma; integrins; migration; scRNA-seq
    DOI:  https://doi.org/10.3389/fimmu.2022.850226
  11. iScience. 2022 May 20. 25(5): 104179
      Glioblastoma is a complex disease that is difficult to treat. Network and data science offer alternative approaches to classical bioinformatics pipelines to study gene expression patterns from single-cell datasets, helping to distinguish genes associated with the control of differentiation and aggression. To identify the key molecular regulators of the networks driving glioblastoma/GSC and predict their cell fate dynamics, we applied a host of data theoretic techniques to gene expression patterns from pediatric and adult glioblastoma, and adult glioma-derived stem cells (GSCs). We identified eight transcription factors (OLIG1/2, TAZ, GATA2, FOXG1, SOX6, SATB2, and YY1) and four signaling genes (ATL3, MTSS1, EMP1, and TPT1) as coordinators of cell state transitions and, thus, clinically targetable putative factors differentiating pediatric and adult glioblastomas from adult GSCs. Our study provides strong evidence of complex systems approaches for inferring complex dynamics from reverse-engineering gene networks, bolstering the search for new clinically relevant targets in glioblastoma.
    Keywords:  Bioinformatics; Cancer; Gene network
    DOI:  https://doi.org/10.1016/j.isci.2022.104179
  12. Neuro Oncol. 2022 Apr 25. pii: noac107. [Epub ahead of print]
      BACKGROUND: Glioblastoma (GBM) is the most common and malignant primary brain tumour in adults. Despite maximal treatment, median survival remains dismal at 14-24 months. Immunotherapies, such as checkpoint inhibition, have revolutionised management of some cancers but have little benefit for GBM patients. This is, in part, due to the low mutational and neoantigen burden in this immunogenically 'cold' tumour.METHODS: U87MG and patient derived cell lines were treated with 5-aza-2'-deoxycytidine (DAC) and underwent whole exome and transcriptome sequencing. Cell lines were then subjected to cellular assays with neoantigen and cancer testis antigen (CTA) specific T cells.
    RESULTS: We demonstrate that DAC increases neoantigen and CTA mRNA expression through DNA hypomethylation. This results in increased neoantigen presentation by MHC class I in tumour cells, leading to increased neoantigen- and CTA-specific T cell activation and killing of DAC-treated cancer cells. In addition, we show that patients have endogenous cancer-specific T cells in both tumour and blood, which show increased tumour-specific activation in the presence of DAC-treated cells.
    CONCLUSIONS: Our work shows that DAC increases GBM immunogenicity and consequent susceptibility to T cell responses in-vitro. Our results support a potential use of DAC as a sensitizing agent to immunotherapy.
    Keywords:  Glioblastoma; decitabine; immunotherapy; neoantigen; tumour immunology
    DOI:  https://doi.org/10.1093/neuonc/noac107
  13. Sci Rep. 2022 Apr 26. 12(1): 6769
      Killer cell immunoglobulin-like receptors (KIRs) comprise a group of highly polymorphic inhibitory receptors which are specific for classical HLA class-I molecules. Peripheral blood and freshly prepared tumor cell suspensions (n = 60) as well as control samples (n = 32) were investigated for the distribution, phenotype, and functional relevance of CD158ab/KIR2DL1,-2/3 expressing NK-cells in glioblastoma (GBM) patients. We found that GBM were scarcely infiltrated by NK-cells that preferentially expressed CD158ab/KIR2DL1,-2/3 as inhibitory receptors, displayed reduced levels of the activating receptors CD335/NKp46, CD226/DNAM-1, CD159c/NKG2C, and showed diminished capacity to produce IFN-γ and perforin. Functional hypoactivity of GBM-derived NK-cells persisted despite IL-2 preactivation. Blockade with a specific KIR2DL-1,2/3 monoclonal antibody reversed NK-cell inhibition and significantly enhanced degranulation and IFN-γ production of IL-2 preactivated NK-cells in the presence of primary GBM cells and HLA-C expressing but not HLA class-I deficient K562 cells. Additional analysis revealed that significant amounts of IL-2 could be produced by tumor-derived CD4+ and CD8+CD45RA- memory T-cells after combined anti-CD3/anti-CD28 stimulation. Our data indicate that both blockade of inhibitory KIR and IL-2 triggering of tumor-derived NK-cells are necessary to enhance NK-cell responsiveness in GBM.
    DOI:  https://doi.org/10.1038/s41598-022-10680-4
  14. Cell Stress. 2022 Apr;6(4): 45-60
      Glioblastoma (GBM) is a fatal disease with recurrences often associated with radioresistance. Although often effective at treating newly diagnosed GBM, increasing evidence suggests that radiotherapy-induced alterations in tumor metabolism promote GBM recurrence and aggressiveness. Using isogenic radiosensitive and radioresistant GBM cell lines and patient-derived xenolines, we found that acquired radioresistance is associated with a shift from a glycolytic metabolism to a more oxidative metabolism marked by a substantial increase in the activity of the mitochondrial respiratory chain complex cytochrome c oxidase (CcO). This elevated CcO activity was associated with a switch in the isoform expression of the CcO regulatory subunit COX4, from COX4-2 to COX4-1, assembly of CcO-containing mitochondrial supercomplexes (SCs), and reduced superoxide (O2 •-) production. Overexpression of COX4-1 in the radiosensitive cells was sufficient to promote the switch from glycolytic to oxidative metabolism and the incorporation of CcO into SCs, with a concomitant reduction in O2 •- production. Conversely, silencing of COX4-1 expression in normally radioresistant cells reduced CcO activity, promoted the disassembly of mitochondrial SCs, and increased O2 •- production. Additionally, gain or loss of COX4-1 expression was sufficient to induce the radioresistant or radiosensitive phenotype, respectively. Our results demonstrate that COX4-1 promotes SC assembly in GBM cells, and SC assembly may in turn regulate the production of reactive oxygen species and thus the acquisition of radioresistance in GBM.
    Keywords:  COX4; GBM; cytochrome c oxidase; mitochondria; radioresistance; supercomplexes; superoxide
    DOI:  https://doi.org/10.15698/cst2022.04.266
  15. Neuro Oncol. 2022 Apr 23. pii: noac113. [Epub ahead of print]
      BACKGROUND: Selected molecular biomarkers were incorporated into U.S. cancer registry reporting for patients with brain tumors beginning in 2018. We investigated the completeness and validity of these variables, and described the epidemiology of molecularly-defined brain tumor types.METHODS: Brain tumor patients with histopathologically-confirmed diagnosis in 2018 were identified within the Central Brain Tumor Registry of the United States and NCI's Surveillance, Epidemiology, and End Results Incidence databases. The brain molecular markers (BMM) site-specific data item was assessed for coding completeness and validity. 1p/19q status, MGMT promoter methylation, and WHO grade data items, and new ICD-O-3 codes were additionally evaluated. These data were used to profile the characteristics and age-adjusted incidence rates per 100,000 population of molecularly-defined brain tumors with 95% confidence intervals (95%CI).
    RESULTS: BMM completeness across the applicable tumor types was 75-92% and demonstrated favorable coding validity. IDH-wildtype glioblastomas' incidence rate was 1.74 (95%CI: 1.69-1.78), as compared to 0.14 for WHO grade 2 (95%CI: 0.12-0.15), 0.15 for grade 3 (95%CI: 0.14-0.16), and 0.07 for grade 4 (95%CI: 0.06-0.08) IDH-mutant astrocytomas. Irrespective of WHO grade, IDH mutation prevalence was highest in adolescent & young adult patients and IDH-mutant astrocytomas were more frequently MGMT promoter methylated. Among pediatric-type tumors, the incidence rate was 0.06 for H3K27M-mutant diffuse midline gliomas (95%CI: 0.05-0.07), 0.03 for SHH-activated/TP53-wildtype medulloblastomas (95%CI: 0.02-0.03), and <0.01 for both C19MC-altered ETMRs and RELA-fusion ependymomas.
    CONCLUSIONS: Our findings illustrate the success of developing a dedicated, integrated-diagnosis variable, which provides critical molecular information about brain tumors related to accurate diagnosis.
    Keywords:  Biomarkers; Brain tumor; CBTRUS; IDH; Molecular Epidemiology
    DOI:  https://doi.org/10.1093/neuonc/noac113
  16. Nat Rev Cancer. 2022 Apr 29.
      Cancer cells can organize and communicate in functional networks. Similarly to other networks in biology and sociology, these can be highly relevant for growth and resilience. In this Perspective, we demonstrate by the example of glioblastomas and other incurable brain tumours how versatile multicellular tumour networks are formed by two classes of long intercellular membrane protrusions: tumour microtubes and tunnelling nanotubes. The resulting networks drive tumour growth and resistance to standard therapies. This raises the question of how to disconnect brain tumour networks to halt tumour growth and whether this can make established therapies more effective. Emerging principles of tumour networks, their potential relevance for tumour types outside the brain and translational implications, including clinical trials that are already based on these discoveries, are discussed.
    DOI:  https://doi.org/10.1038/s41568-022-00475-0