bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2023–12–03
nine papers selected by
Oltea Sampetrean, Keio University



  1. Sci Rep. 2023 Nov 27. 13(1): 20874
      Glioblastoma (GBM) is an aggressive primary CNS malignancy and clinical outcomes have remained stagnant despite introduction of new treatments. Understanding the tumor microenvironment (TME) in which tumor associated macrophages (TAMs) interact with T cells has been of great interest. Although previous studies examining TAMs in GBM have shown that certain TAMs are associated with specific clinical and/or pathologic features, these studies used an outdated M1/M2 paradigm of macrophage polarization and failed to include the continuum of TAM states in GBM. Perhaps most significantly, the interactions of TAMs with T cells have yet to be fully explored. Our study uses single-cell RNA sequencing data from adult IDH-wildtype GBM, with the primary aim of deciphering the cellular interactions of the 7 TAM subtypes with T cells in the GBM TME. Furthermore, the interactions discovered herein are compared to IDH-mutant astrocytoma, allowing for focus on the cellular ecosystem unique to GBM. The resulting ligand-receptor interactions, signaling sources, and global communication patterns discovered provide a framework for future studies to explore methods of leveraging the immune system for treating GBM.
    DOI:  https://doi.org/10.1038/s41598-023-48116-2
  2. Neuro Oncol. 2023 Nov 27. pii: noad222. [Epub ahead of print]
       BACKGROUND: Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting.
    METHODS: We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth.
    RESULTS: High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs, however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy.
    CONCLUSIONS: Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.
    Keywords:  D2 dopamine receptor (DRD2) signaling; Diffuse intrinsic pontine glioma (DIPG/DMG); H3K9 methyltransferase SUV39H1; chaetocin; small-molecule epigenetic compound screen; stemness and oncogenic networks
    DOI:  https://doi.org/10.1093/neuonc/noad222
  3. Front Immunol. 2023 ;14 1284118
       Introduction: Treatment for glioblastomas, aggressive and nearly uniformly fatal brain tumors, provide limited long-term success. Immunosuppression by myeloid cells in both the tumor microenvironment and systemic circulation are believed to contribute to this treatment resistance. Standard multi-modality therapy includes conventionally fractionated radiotherapy over 6 weeks; however, hypofractionated radiotherapy over 3 weeks or less may be appropriate for older patients or populations with poor performance status. Lymphocyte concentration changes have been reported in patients with glioblastoma; however, monocytes are likely a key cell type contributing to immunosuppression in glioblastoma. Peripheral monocyte concentration changes in patients receiving commonly employed radiation fractionation schemes are unknown.
    Methods: To determine the effect of conventionally fractionated and hypofractionated radiotherapy on complete blood cell leukocyte parameters, retrospective longitudinal concentrations were compared prior to, during, and following standard chemoradiation treatment.
    Results: This study is the first to report increased monocyte concentrations and decreased lymphocyte concentrations in patients treated with conventionally fractionated radiotherapy compared to hypofractionated radiotherapy.
    Discussion: Understanding the impact of fractionation on peripheral blood leukocytes is important to inform selection of dose fractionation schemes for patients receiving radiotherapy.
    Keywords:  conventionally fractionated radiotherapy; fractionation; glioblastoma; hypofractionated radiotherapy; leukocytes
    DOI:  https://doi.org/10.3389/fimmu.2023.1284118
  4. Lancet Oncol. 2023 Dec;pii: S1470-2045(23)00507-7. [Epub ahead of print]24(12): e455
      
    DOI:  https://doi.org/10.1016/S1470-2045(23)00507-7
  5. Cancer Cell. 2023 Nov 20. pii: S1535-6108(23)00393-8. [Epub ahead of print]
      Recent clinical trials for H3K27-altered diffuse midline gliomas (DMGs) have shown much promise. We present a consensus roadmap and identify three major barriers: (1) refinement of experimental models to include immune and brain-specific components; (2) collaboration among researchers, clinicians, and industry to integrate patient-derived data through sharing, transparency, and regulatory considerations; and (3) streamlining clinical efforts including biopsy, CNS-drug delivery, endpoint determination, and response monitoring. We highlight the importance of comprehensive collaboration to advance the understanding, diagnostics, and therapeutics for DMGs.
    DOI:  https://doi.org/10.1016/j.ccell.2023.11.002
  6. bioRxiv. 2023 Nov 15. pii: 2023.11.13.566775. [Epub ahead of print]
      The efficacy of chimeric antigen receptor (CAR)-T therapy has been limited against brain tumors to date. CAR-T cells infiltrating syngeneic intracerebral SB28-EGFRvIII glioma revealed impaired mitochondrial ATP production and a markedly hypoxic status compared to ones migrating to subcutaneous tumors. Drug screenings to improve metabolic states of T cells under hypoxic conditions led us to evaluate the combination of AMPK activator Metformin and the mTOR inhibitor Rapamycin (Met+Rap). Met+Rap-pretreated mouse CAR-T cells showed activated PPAR-gamma coactivator 1α (PGC-1α) through mTOR inhibition and AMPK activation, and a higher level of mitochondrial spare respiratory capacity than those pretreated with individual drugs or without pretreatment. Moreover, Met+Rap-pretreated CAR-T cells demonstrated persistent and effective anti-glioma cytotoxic activities in the hypoxic condition. Furthermore, a single intravenous infusion of Met+Rap-pretreated CAR-T cells significantly extended the survival of mice bearing intracerebral SB28-EGFRvIII gliomas. Mass cytometric analyses highlighted increased glioma-infiltrating CAR-T cells in the Met+Rap group with fewer Ly6c+ CD11b+ monocytic myeloid-derived suppressor cells in the tumors. Finally, human CAR-T cells pretreated with Met+Rap recapitulated the observations with murine CAR-T cells, demonstrating improved functions in vitro hypoxic conditions. These findings advocate for translational and clinical exploration of Met+Rap-pretreated CAR-T cells in human trials.
    DOI:  https://doi.org/10.1101/2023.11.13.566775
  7. bioRxiv. 2023 Nov 16. pii: 2023.11.14.567048. [Epub ahead of print]
      The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.
    DOI:  https://doi.org/10.1101/2023.11.14.567048
  8. Acta Neuropathol Commun. 2023 Nov 27. 11(1): 186
      In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
    Keywords:  Astrocytoma; IDH2 mutation; Malignant phenotype; PDX
    DOI:  https://doi.org/10.1186/s40478-023-01683-x