bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2024–05–05
three papers selected by
Oltea Sampetrean, Keio University



  1. Nat Commun. 2024 Apr 29. 15(1): 3602
      Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.
    DOI:  https://doi.org/10.1038/s41467-024-47985-z
  2. Res Sq. 2024 Apr 18. pii: rs.3.rs-4164642. [Epub ahead of print]
      Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
    DOI:  https://doi.org/10.21203/rs.3.rs-4164642/v1
  3. Neuro Oncol. 2024 May 02. pii: noae085. [Epub ahead of print]
       BACKGROUND: Glioblastoma is a highly aggressive type of brain tumour for which there is no curative treatment available. Immunotherapies have shown limited responses in unselected patients, and there is an urgent need to identify mechanisms of treatment resistance to design novel therapy strategies.
    METHODS: Here we investigated the phenotypic and transcriptional dynamics at single-cell resolution during nivolumab immune checkpoint treatment of glioblastoma patients.
    RESULTS: We present the integrative paired single-cell RNA-seq analysis of 76 tumour samples from patients in a clinical trial of the PD-1 inhibitor nivolumab and untreated patients. We identify a distinct aggressive phenotypic signature in both tumour cells and the tumour microenvironment in response to nivolumab. Moreover, nivolumab-treatment was associated with an increased transition to mesenchymal stem-like tumour cells, and an increase in TAMs and exhausted and proliferative T cells. We verify and extend our findings in large external glioblastoma dataset (n = 298), develop a latent immune signature and find 18% of primary glioblastoma samples to be latent immune, associated with mesenchymal tumour cell state and TME immune response. Finally, we show that latent immune glioblastoma patients are associated with shorter overall survival following immune checkpoint treatment (p = 0.0041).
    CONCLUSIONS: We find a resistance mechanism signature in a quarter of glioblastoma patients associated with a tumour-cell transition to a more aggressive mesenchymal-like state, increase in TAMs and proliferative and exhausted T cells in response to immunotherapy. These patients may instead benefit from neuro-oncology therapies targeting mesenchymal tumour cells.
    Keywords:  Glioblastoma; TME; immunotherapy; mesenchymal; scRNA-seq
    DOI:  https://doi.org/10.1093/neuonc/noae085