Methods Mol Biol. 2022 ;2537 231-246
Molecular diversification of the cellular proteome through alternative splicing has emerged as an important biological principle. However, the lack of tools to specifically detect and quantify proteoforms (Smith et al., Nat Methods 10:186-187, 2013) is a major impediment to functional studies. Recently, biological mass spectrometry (MS) has undergone impressive advances (Mann, Nat Rev Mol Cell Biol 17:678, 2016), including the generation of a highly diverse set of biological applications (Aebersold and Mann, Nature 537:347-355, 2016), and has demonstrated to be an essential tool to address many biological questions (Savitski et al., Science 346:1255784, 2014; Rinner et al., Nat Methods 5:315-318, 2008). In particular, targeted LC-MS, with its high selectivity and specificity, is ideally suited for the precise and sensitive quantification of specific proteins and their proteoforms (Picotti and Aebersold, Nat Methods 9:555-566, 2012). We describe in detail the application of this workflow applied to dissect the molecular diversity of the synaptic adhesion proteins and their splicing-derived proteoforms (Schreiner et al., Elife 4:e07794, 2015).
Keywords: Alternative splicing; Proteoform quantification; Selected reaction monitoring; Stable isotope dilution; Targeted mass spectrometry