Cancer Lett. 2022 Nov 25. pii: S0304-3835(22)00507-9. [Epub ahead of print]554
216020
OBJECTIVE: Resistance to immunotherapy and chemotherapy hinders the prognosis of pancreatic cancer(PC). We hypothesized that the combination of mTOR inhibitor sirolimus and gemcitabine would change the metabolic landscape of PC and enhance the anti-PD-L1 therapy.METHODS: In KPC mice, the following regimens were administered and tumor growth inhibition rates(TGI%) were calculated: sirolimus(S), PD-L1 antibody(P), gemcitabine(G), sirolimus + PD-L1 antibody(SP), sirolimus + gemcitabine(SG), PD-L1 + gemcitabine(PG) and sirolimus + PD-L1 antibody + gemcitabine(SPG). The metabolic changes of tumors were identified by LC-MS and subpopulations of immune cells were measured by flow cytometry. Sirolimus treated macrophages were co-cultured with PC cells in vitro, and the metabolic changes of macrophages and tumor cells as well as tumor cells' viability were detected.
RESULTS: The monotherapy of S, P and G didn't inhibit tumor growth significantly. The combination of SP, PG and SG didn't improve the TGI% significantly compared with monotherapy. However, the TGI% of SPG combination was higher than other groups. The proportion of CD68+ macrophages increased in the peripheral blood and CD8+ T cells decreased in the tumor tissues after SPG treatment. LC-MS identified 42 differential metabolites caused by sirolimus in SPG group, among which 10 metabolites had potential effects on macrophages. Sirolimus treated M1 and M2 macrophages inhibited the proliferation of tumor cells and decreased tumor cells' glycolysis. The glycolysis of M2 macrophages was increased by sirolimus.
CONCLUSIONS: mTOR inhibitor can change the immune microenvironment of PC via metabolic reprogramming, thus promoting the efficacy of PD-L1 blockade when combined with gemcitabine.
Keywords: KPC murine Model; Macrophage; Metabolic reprogramming; Pancreatic cancer; mTOR inhibitor