bims-mecami Biomed News
on Metabolic interactions between cancer cells and their microenvironment
Issue of 2023‒03‒26
six papers selected by
Oltea Sampetrean
Keio University


  1. Ann N Y Acad Sci. 2023 Mar 24.
      Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.
    Keywords:  cancer; immunity; immunometabolism; immunotherapy; metabolism; obesity
    DOI:  https://doi.org/10.1111/nyas.14976
  2. Trends Cancer. 2023 Mar 17. pii: S2405-8033(23)00028-6. [Epub ahead of print]
      Cancer is a systemic disease that involves malignant cell-intrinsic and -extrinsic metabolic adaptations. Most studies have tended to focus on elucidating the metabolic vulnerabilities in the primary tumor microenvironment, leaving the metastatic microenvironment less explored. In this opinion article, we discuss the current understanding of the metabolic crosstalk between the cancer cells and the tumor microenvironment, both at local and systemic levels. We explore the possible influence of the primary tumor secretome to metabolically and epigenetically rewire the nonmalignant distant organs during prometastatic niche formation and successful metastatic colonization by the cancer cells. In an attempt to understand the process of prometastatic niche formation, we have speculated how cancer may hijack the inherent regenerative propensity of tissue parenchyma during metastatic colonization.
    Keywords:  metabolism; metastasis; prometastatic niche; stroma; tissue regeneration; wound response
    DOI:  https://doi.org/10.1016/j.trecan.2023.02.005
  3. Sci Rep. 2023 Mar 22. 13(1): 4707
      Obesity is a negative prognosis factor for breast cancer. Yet, the biological mechanisms underlying this effect are still largely unknown. An emerging hypothesis is that the transfer of free fatty acids (FFA) between adipocytes and tumor cells might be altered under obese conditions, contributing to tumor progression. Currently there is a paucity of models to study human mammary adipocytes (M-Ads)-cancer crosstalk. As for other types of isolated white adipocytes, herein, we showed that human M-Ads die within 2-3 days by necrosis when grown in 2D. As an alternative, M-Ads were grown in a fibrin matrix, a 3D model that preserve their distribution, integrity and metabolic function for up to 5 days at physiological glucose concentrations (5 mM). Higher glucose concentrations frequently used in in vitro models promote lipogenesis during M-Ads culture, impairing their lipolytic function. Using transwell inserts, the matrix embedded adipocytes were cocultured with breast cancer cells. FFA transfer between M-Ads and cancer cells was observed, and this event was amplified by obesity. Together these data show that our 3D model is a new tool for studying the effect of M-Ads on tumor cells and beyond with all the components of the tumor microenvironment including the immune cells.
    DOI:  https://doi.org/10.1038/s41598-023-31673-x
  4. Front Biosci (Elite Ed). 2023 Jan 04. 15(1): 2
      Glutamine is a conditionally essential amino acid important for cancer cell proliferation through intermediary metabolism leading to de novo synthesis of purine and pyrimidine nucleotides, hexosamine biosytnehsis, fatty acid synthesis through reductive carboxylation, maintenance of redox homeostasis, glutathione synthesis, production of non-essential amino acids, and mitochondrial oxidative phosphorylation. Prostate cancer has increasingly been characterized as a tumor type that is heavily dependent on glutamine for growth and survival. In this review, we highlight the preclinical evidence that supports a relationship between glutamine signaling and prostate cancer progression. We focus on the regulation of glutamine metabolism in prostate cancer through key pathways involving the androgen receptor pathway, MYC, and the PTEN/PI3K/mTOR pathway. We end with a discussion on considerations for translation of targeting glutamine metabolism as a therapeutic strategy to manage prostate cancer. Here, it is important to understand that the tumor microenvironment also plays a role in facilitating glutamine signaling and resultant prostate cancer growth. The druggability of prostate cancer glutamine metabolism is more readily achievable with our greater understanding of tumor metabolism and the advent of selective glutaminase inhibitors that have proven safe and tolerable in early-phase clinical trials.
    Keywords:  MYC; PTEN; androgen receptor; castrate-resistance; glutaminase; glutamine; mTOR; prostate cancer
    DOI:  https://doi.org/10.31083/j.fbe1501002
  5. Redox Biol. 2023 Mar 15. pii: S2213-2317(23)00079-4. [Epub ahead of print]62 102678
      Elevated lipid peroxidation (LPO), usually present in the tumour microenvironment (TME), is profoundly implicated in antitumour immunity and may be targeted for the development of new antitumour therapies. However, tumour cells may also rewire their metabolism to survive elevated LPO. Here, we report a novel and nonantioxidant mechanism by which tumour cells benefit from accumulated cholesterol to restrain LPO and ferroptosis, a nonapoptotic form of cell death characterized by accumulated LPO. Modulating cholesterol metabolism, especially LDLR-mediated cholesterol uptake, shifted the susceptibility of tumour cells to ferroptosis. Elevation of cellular cholesterol content specifically restrained LPO triggered by GSH-GPX4 inhibition or oxidizing factors in the TME. Furthermore, depletion of TME cholesterol by MβCD efficiently enhanced the antitumour efficacy of ferroptosis in a mouse xenograft model. Distinct from the antioxidant effect of its metabolic intermediates, the protective role of cholesterol was ascribed to its ability to decrease membrane fluidity and promote lipid raft formation, which affects the diffusion of LPO substrates. A correlation between LPO and lipid rafts was also found in tumour tissues from renal cancer patients. Together, our findings have identified a general and nonsacrificial mechanism by which cholesterol suppresses LPO, which can be exploited to enhance the efficacy of ferroptosis-based antitumour strategies.
    Keywords:  Cholesterol; Ferroptosis; LDLR; Lipid peroxidation; Lipid raft; Tumour microenvironment
    DOI:  https://doi.org/10.1016/j.redox.2023.102678
  6. J Oncol. 2023 ;2023 6851036
      Increasing evidence suggests that diverse activation patterns of metabolic signalling pathways may lead to molecular diversity of cervical cancer (CC). But rare research focuses on the alternation of fatty acid metabolism (FAM) in CC. Therefore, we constructed and compared models based on the expression of FAM-related genes from the Cancer Genome Atlas by different machine learning algorithms. The most reliable model was built with 14 significant genes by LASSO-Cox regression, and the CC cohort was divided into low-/high-risk groups by the median of risk score. Then, a feasible nomogram was established and validated by C-index, calibration curve, net benefit, and decision curve analysis. Furthermore, the hub genes among differential expression genes were identified and the post-transcriptional and translational regulation networks were characterized. Moreover, the somatic mutation and copy number variation landscapes were depicted. Importantly, the specific mutation drivers and signatures of the FAM phenotypes were excavated. As a result, the high-risk samples were featured by activated de novo fatty acid synthesis, epithelial to mesenchymal transition, angiogenesis, and chronic inflammation response, which might be caused by mutations of oncogenic driver genes in RTK/RAS, PI3K, and NOTCH signalling pathways. Besides the hyperactivity of cytidine deaminase and deficiency of mismatch repair, the mutations of POLE might be partially responsible for the mutations in the high-risk group. Next, the antigenome including the neoantigen and cancer germline antigens was estimated. The decreasing expression of a series of cancer germline antigens was identified to be related to reduction of CD8 T cell infiltration in the high-risk group. Then, the comprehensive evaluation of connotations between the tumour microenvironment and FAM phenotypes demonstrated that the increasing risk score was related to the suppressive immune microenvironment. Finally, the prediction of therapy targets revealed that the patients with high risk might be sensitive to the RAF inhibitor AZ628. Our findings provide a novel insight for personalized treatment in CC.
    DOI:  https://doi.org/10.1155/2023/6851036