bims-mecami Biomed News
on Metabolic interactions between cancer cells and their microenvironment
Issue of 2024–12–15
ten papers selected by
Oltea Sampetrean, Keio University



  1. Cell Rep. 2024 Dec 12. pii: S2211-1247(24)01415-3. [Epub ahead of print]43(12): 115064
      The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
    Keywords:  CP: Metabolism; immunometabolism; metabolic reprogramming; metabolite sensing; tumor metabolism; tumor therapy
    DOI:  https://doi.org/10.1016/j.celrep.2024.115064
  2. iScience. 2024 Dec 20. 27(12): 111359
      Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
    Keywords:  Epigenetics; Molecular genetics
    DOI:  https://doi.org/10.1016/j.isci.2024.111359
  3. Cell Death Differ. 2024 Dec 10.
      Disturbances in tumor cell metabolism reshape the tumor microenvironment (TME) and impair antitumor immunity, but the implicit mechanisms remain elusive. Here, we found that spermine synthase (SMS) was significantly upregulated in tumor cells, which correlated positively with the immunosuppressive microenvironment and predicted poor survival in hepatocellular carcinoma (HCC) patients. Via "subcutaneous" and "orthotopic" HCC syngeneic mouse models and a series of in vitro coculture experiments, we identified elevated SMS levels in HCC cells played a role in immune escape mainly through its metabolic product spermine, which induced M2 polarization of tumor-associated macrophages (TAMs) and subsequently corresponded with a decreased antitumor functionality of CD8+ T cells. Mechanistically, we discovered that spermine reprogrammed TAMs mainly by activating the PI3K-Akt-mTOR-S6K signaling pathway. Spermine inhibition in combination with immune checkpoint blockade effectively diminished tumor burden in vivo. Our results expand the understanding of the critical role of metabolites in regulating cancer progression and antitumor immunity and open new avenues for developing novel therapeutic strategies against HCC.
    DOI:  https://doi.org/10.1038/s41418-024-01409-z
  4. Front Immunol. 2024 ;15 1492050
      Lactic acid, a key metabolic byproduct within the tumor microenvironment, has garnered significant attention for its role in immune evasion mechanisms. Tumor cells produce and release large amounts of lactic acid into the tumor microenvironment through aberrant glycolysis via the Warburg effect, leading to a drop in pH. Elevated lactic acid levels profoundly suppress proliferation capacity, cytotoxic functions, and migratory abilities of immune effector cells such as macrophages and natural killer cells at the tumor site. Moreover, lactic acid can modulate the expression of surface molecules on immune cells, interfering with their recognition and attack of tumor cells, and it regulates signaling pathways that promote the expansion and enhanced function of immunosuppressive cells like regulatory T cells, thereby fostering immune tolerance within the tumor microenvironment. Current research is actively exploring strategies targeting lactic acid metabolism to ameliorate tumor immune evasion. Key approaches under investigation include inhibiting the activity of critical enzymes in lactic acid production to reduce its synthesis or blocking lactate transporters to alter intracellular and extracellular lactate distribution. These methods hold promise when combined with existing immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies to enhance the immune system's ability to eliminate tumor cells. This could pave the way for novel combinatorial treatment strategies in clinical cancer therapy, effectively overcoming tumor immune evasion phenomena, and ultimately improving overall treatment efficacy.
    Keywords:  combination therapy; immune evasion; lactic acid; tumor immune; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2024.1492050
  5. Nat Rev Drug Discov. 2024 Dec 12.
      The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
    DOI:  https://doi.org/10.1038/s41573-024-01098-w
  6. Cancer Cell. 2024 Dec 03. pii: S1535-6108(24)00438-0. [Epub ahead of print]
      Cellular metabolic status profoundly influences T cell differentiation, persistence, and anti-tumor efficacy. Our single-cell metabolic analyses of T cells reveal that diminished mannose metabolism is a prominent feature of T cell dysfunction. Conversely, experimental augmentation/restoration of mannose metabolism in adoptively transferred T cells via D-mannose supplementation enhances anti-tumor activity and restricts exhaustion differentiation both in vitro and in vivo. Mechanistically, D-mannose treatment induces intracellular metabolic programming and increases the O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of β-catenin, which preserves Tcf7 expression and epigenetic stemness, thereby promoting stem-like programs in T cells. Furthermore, in vitro expansion with D-mannose supplementation yields T cell products for adoptive therapy with stemness characteristics, even after extensive long-term expansion, that exhibits enhanced anti-tumor efficacy. These findings reveal cell-intrinsic mannose metabolism as a physiological regulator of CD8+ T cell fate, decoupling proliferation/expansion from differentiation, and underscoring the therapeutic potential of mannose modulation in cancer immunotherapy.
    DOI:  https://doi.org/10.1016/j.ccell.2024.11.003
  7. bioRxiv. 2024 Nov 21. pii: 2024.11.20.624542. [Epub ahead of print]
      Glioblastoma (GBM) is uniformly lethal due to profound treatment resistance. Altered cellular metabolism is a key mediator of GBM treatment resistance. Uptake of the essential sulfur-containing amino acid methionine is drastically elevated in GBMs compared to normal cells, however, it is not known how this methionine is utilized or whether it relates to GBM treatment resistance. Here, we find that radiation acutely increases the levels of methionine-related metabolites in a variety of treatment-resistant GBM models. Stable isotope tracing studies further revealed that radiation acutely activates methionine to S-adenosyl methionine (SAM) conversion through an active signaling event mediated by the kinases of the DNA damage response. In vivo tumor SAM synthesis increases after radiation, while normal brain SAM production remains unchanged, indicating a tumor- specific metabolic alteration to radiation. Pharmacological and dietary strategies to block methionine to SAM conversion slowed DNA damage response and increased cell death following radiation in vitro. Mechanistically, these effects are due to depletion of DNA repair proteins and are reversed by SAM supplementation. These effects are selective to GBMs lacking the methionine salvage enzyme methylthioadenosine phosphorylase. Pharmacological inhibition of SAM synthesis hindered tumor growth in flank and orthotopic in vivo GBM models when combined with radiation. By contrast, methionine depletion does not reduce tumor SAM levels and fails to radiosensitize intracranial models, indicating depleting SAM, as opposed to simply lowering methionine, is critical for hindering tumor growth in intracranial models of GBM. These results highlight a new signaling link between DNA damage and SAM synthesis and define the metabolic fates of methionine in GBM in vivo . Inhibiting radiation-induced SAM synthesis slows DNA repair and augments radiation efficacy in GBM. Using MAT2A inhibitors to deplete SAM may selectively overcome treatment resistance in GBMs with defective methionine salvage while sparing normal brain.
    DOI:  https://doi.org/10.1101/2024.11.20.624542
  8. Mol Med Rep. 2025 Feb;pii: 48. [Epub ahead of print]31(2):
      Metabolic reprogramming is a prominent characteristic of tumor cells, evidenced by heightened secretion of lactate, which is linked to tumor progression. Furthermore, the accumulation of lactate in the tumor microenvironment (TME) influences immune cell activity, including the activity of macrophages, dendritic cells and T cells, fostering an immunosuppressive milieu. Anti‑programmed cell death protein 1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) therapy is associated with a prolonged survival time of patients with non‑small cell lung cancer. However, some patients still develop resistance to anti‑PD‑1/PD‑L1 therapy. Lactate is associated with resistance to anti‑PD‑1/PD‑L1 therapy. The present review summarizes what is known about lactate metabolism in tumor cells and how it affects immune cell function. In addition, the present review emphasizes the relationship between lactate secretion and immunotherapy resistance. The present review also explores the potential for targeting lactate within the TME to enhance the efficacy of immunotherapy.
    Keywords:  cancer immunity; immunotherapy; lactate; programmed cell death protein 1; programmed death‑ligand 1; tumor environment
    DOI:  https://doi.org/10.3892/mmr.2024.13413
  9. Cancer Cell. 2024 Dec 10. pii: S1535-6108(24)00449-5. [Epub ahead of print]
      In this issue of Cancer Cell, Qiu et al. use single-cell metabolic analysis to identify reduced mannose metabolism as a previously unknown feature of exhausted T cells. This metabolic pathway can be targeted to enhance memory and persistence of adoptively transferred T cells, resulting in improved anti-tumor efficacy.
    DOI:  https://doi.org/10.1016/j.ccell.2024.11.014
  10. Science. 2024 Dec 12. eadj3020
      Exhausted T cells (TEX) in cancer and chronic viral infections undergo metabolic and epigenetic remodeling, impairing their protective capabilities. However, the impact of nutrient metabolism on epigenetic modifications that control TEX differentiation remains unclear. We showed that TEX cells shifted from acetate to citrate metabolism by downregulating acetyl-CoA synthetase 2 (ACSS2) while maintaining ATP-citrate lyase (ACLY) activity. This metabolic switch increased citrate-dependent histone acetylation, mediated by histone acetyltransferase KAT2A-ACLY interactions, at TEX signature-genes while reducing acetate-dependent histone acetylation, dependent on p300-ACSS2 complexes, at effector and memory T cell genes. Nuclear ACSS2 overexpression or ACLY inhibition prevented TEX differentiation and enhanced tumor-specific T cell responses. These findings unveiled a nutrient-instructed histone code governing CD8+ T cell differentiation, with implications for metabolic- and epigenetic-based T cell therapies.
    DOI:  https://doi.org/10.1126/science.adj3020