bims-mecosi Biomed News
on Membrane contact sites
Issue of 2021–10–10
five papers selected by
Verena Kohler, Stockholm University



  1. Mol Cell Oncol. 2021 ;8(4): 1919473
      Regulation of cell life and death by members of the BCL-2 family of proteins occurs at the mitochondria. Large portions of the mitochondria's outer membrane are found in tight approximation with the endoplasmic reticulum (ER), known as mitochondria-associated membranes (MAMs) or mitochondria-ER contact sites (MERCs). We recently reported that BOK is present within MAMs where it regulates Ca2+ transfer from the ER to the mitochondria, appropriate MAM components and MERC structure, and apoptosis.
    Keywords:  BCL-2; BOK; MAM; MERC; apoptosis; calcium
    DOI:  https://doi.org/10.1080/23723556.2021.1919473
  2. Biochem Biophys Rep. 2021 Dec;28 101142
      The correct organization of mitochondrial DNA (mtDNA) in nucleoids and the contacts of mitochondria with the ER play an important role in maintaining the mitochondrial genome distribution within the cell. Mitochondria-associated ER membranes (MAMs) consist of interacting proteins and lipids located in the outer mitochondrial membrane and ER membrane, forming a platform for the mitochondrial inner membrane-associated genome replication factory as well as connecting the nucleoids with the mitochondrial division machinery. We show here that knockdown of a core component of mitochondrial nucleoids, TFAM, causes changes in the mitochondrial nucleoid populations, which subsequently impact ER-mitochondria membrane contacts. Knockdown of TFAM causes a significant decrease in the copy number of mtDNA as well as aggregation of mtDNA nucleoids. At the same time, it causes significant upregulation of the replicative TWNK helicase in the membrane-associated nucleoid fraction. This is accompanied by a transient elevation of MAM proteins, indicating a rearrangement of the linkage between ER and mitochondria triggered by changes in mitochondrial nucleoids. Reciprocal knockdown of the mitochondrial replicative helicase TWNK causes a decrease in mtDNA copy number and modifies mtDNA membrane association, however, it does not cause nucleoid aggregation and considerable alterations of MAM proteins in the membrane-associated fraction. Our explanation is that the aggregation of mitochondrial nucleoids resulting from TFAM knockdown triggers a compensatory mechanism involving the reorganization of both mitochondrial nucleoids and MAM. These results could provide an important insight into pathological conditions associated with impaired nucleoid organization or defects of mtDNA distribution.
    Keywords:  Mitochondrial DNA; Mitochondrial transcription factor A (TFAM); Nucleoids; Organellar membranes; TWNK helicase
    DOI:  https://doi.org/10.1016/j.bbrep.2021.101142
  3. Mol Neurobiol. 2021 Oct 02.
      Exposure to stress plays a detrimental role in the pathogenesis of hypertension via neuroinflammation pathways. Microglial neuroinflammation in the rostral ventrolateral medulla (RVLM) exacerbates stress-induced hypertension (SIH) by increasing sympathetic hyperactivity. Mitochondria of microglia are the regulators of innate immune response. Sigma-1R (σ-1R) localizes to the mitochondria-associated membranes (MAMs) and regulates endoplasmic reticulum (ER) and mitochondria communication, in part through its chaperone activity. The present study aims to investigate the protective role of σ-1R on microglial-mediated neuroinflammation. Stress-induced hypertension (SIH) was induced in rats using electric foot shocks and intermittent noise. Arterial blood pressure (ABP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were measured to evaluate the sympathetic nervous system (SNS) activities. SKF10047 (100 µM), an agonist of σ-1R, was administrated to rats, then σ-1R localization and MAM alterations were detected by immuno-electron microscopy. Mitochondrial calcium homeostasis was examined in primary microglia and/or BV-2 microglia cells. The effect of SKF10047 treatment on the mitochondrial respiratory function of cultured microglia was measured using a Seahorse Extracellular Flux Analyzer. Confocal microscopic images were performed to indicate mitochondrial dynamics. Stress reduces σ-1R's localization at the MAMs, leading to decreased ER-mitochondria contact and IP3R-GRP75-VDAC calcium transport complexes expression in the RVLM of rats. SKF10047 promotes the length and coverage of MAMs in the prorenin-treated microglia. Prorenin treatment increases mitoROS levels, and inhibits Ca2+ signalling between the two organelles, therefore negatively affects ATP production in BV2 cells, and these effects are reversed by SKF10047 treatment. We found mitochondrial hyperfusion and microglial M1 polarization in prorenin-treated microglia. SKF10047 suppresses microglial M1 polarization and RVLM neuroinflammation, subsequently ameliorates sympathetic hyperactivity in stress-induced hypertensive rats. Sigma-1 receptor activation suppresses microglia M1 polarization and neuroinflammation via regulating endoplasmic reticulum-mitochondria contact and mitochondrial functions in stress-induced hypertension rats.
    Keywords:  Hypertension; Neuroinflammation; Sigma-1 receptor; Stress; Sympathetic nervous system
    DOI:  https://doi.org/10.1007/s12035-021-02488-6
  4. J Plant Physiol. 2021 Oct 01. pii: S0176-1617(21)00179-6. [Epub ahead of print]266 153540
      The endoplasmic reticulum (ER) and the cytoskeleton are functionally linked in living cells. Past research has focused on how the cytoskeleton regulates ER dynamics. How the ER may contribute to cytoskeletal dynamics has been overlooked. In this commentary, I examined how the ER mediates actin and microtubule dynamics in plant cells.
    Keywords:  ARK1; Actin; ER; Microtubules; NET3; RHD3
    DOI:  https://doi.org/10.1016/j.jplph.2021.153540
  5. Food Funct. 2021 Oct 05.
      Di (2-ethylhexyl) phthalate (DEHP) is a hazardous compound used as a plasticizer in plastic products. As a natural carotenoid, lycopene (LYC) is considered an effective protective agent against various types of organ damage. The present study aimed to investigate the role of mitochondria-endoplasmic reticulum (ER) coupling in LYC preventing DEHP-induced hepatotoxicity. The mice were treated with LYC (5 mg kg-1) and/or DEHP (500 or 1000 mg kg-1). In the present study, LYC prevented DEHP-induced histopathological changes including fibrosis and glycogen storage in the liver. Additionally, LYC alleviated DEHP-induced ultrastructural injury of mitochondria and ER. LYC had the underlying preventability against DEHP-induced mitochondrial dynamics imbalance including an increase in fission and a decrease in fusion. Furthermore, DEHP induced mitochondria-associated endoplasmic reticulum membrane (MAM) disorder-induced ER stress through the ER unfolded protein response (UPRER), but LYC alleviated these alterations. Therefore, LYC prevented DEHP-induced hepatic mitochondrial dynamics and MAM disorder, leading to ER stress. The present study provides novel evidence of mitochondria-ER coupling as a target for LYC that prevents DEHP-induced hepatotoxicity.
    DOI:  https://doi.org/10.1039/d1fo00478f